Natural Products and Bioprospecting    2024, Vol. 14 Issue (2) : 3-3     DOI: 10.1007/s13659-024-00436-0
ORIGINAL ARTICLES |
Characterization of Chilean hot spring-origin Staphylococcus sp. BSP3 produced exopolysaccharide as biological additive
Srijan Banerjee1, Gustavo Cabrera-Barjas2, Jaime Tapia1, João Paulo Fabi3,4, Cedric Delattre5,6, Aparna Banerjee7
1. Instituto de Química de Recursos Naturales, Universidad de Talca, CP 3460000, Talca, Chile;
2. Universidad San Sebastián Campus Las Tres Pascualas, Facultad de Ciencias Para el Cuidado de la Salud, Lientur 1457, CP 4080871, Concepción, Chile;
3. Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil;
4. Food Research Center (FoRC), CePID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo, SP, Brazil;
5. Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, 63000, Clermont-Ferrand, France;
6. Institut Universitaire de France (IUF), 1 Rue Descartes, 75005, Paris, France;
7. Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, CP 3467987, Talca, Chile
Download: PDF(3445 KB)   HTML ()  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  A type of high molecular weight bioactive polymers called exopolysaccharides (EPS) are produced by thermophiles, the extremophilic microbes that thrive in acidic environmental conditions of hot springs with excessively warm temperatures. Over time, EPS became important as natural biotechnological additives because of their noncytotoxic, emulsifying, antioxidant, or immunostimulant activities. In this article, we unravelled a new EPS produced by Staphylococcus sp. BSP3 from an acidic (pH 6.03) San Pedro hot spring (38.1 ℃) located in the central Andean mountains in Chile. Several physicochemical techniques were performed to characterize the EPS structure including Scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS), Atomic Force Microscopy (AFM), High-Performance Liquid Chromatography (HPLC), Gel permeation chromatography (GPC), Fourier Transform Infrared Spectroscopy (FTIR), 1D Nuclear Magnetic Resonance (NMR), and Thermogravimetric analysis (TGA). It was confirmed that the amorphous surface of the BSP3 EPS, composed of rough pillar-like nanostructures, is evenly distributed. The main EPS monosaccharide constituents were mannose (72%), glucose (24%) and galactose (4%). Also, it is a medium molecular weight (43.7 kDa) heteropolysaccharide. NMR spectroscopy demonstrated the presence of a [→6)-α-d-Manp-(1→6)-α-d-Manp-(1→] backbone 2-O substituted with 1-α-d-Manp. A high thermal stability of EPS (287 ℃) was confirmed by TGA analysis. Emulsification, antioxidant, flocculation, water-holding (WHC), and oil-holding (OHC) capacities are also studied for biotechnological industry applications. The results demonstrated that BSP3 EPS could be used as a biodegradable material for different purposes, like flocculation and natural additives in product formulation.
Keywords Staphylococcus      Hot spring      Exopolysaccharides      Structural characterization      Flocculation      Antioxidant activity     
Fund:This research was funded by FONDECYT Regular, Grant Number 1231917 by ANID, Govt. of Chile.
Corresponding Authors: Aparna Banerjee,E-mail:aparna.banerjee@uautonoma.cl     E-mail: aparna.banerjee@uautonoma.cl
Issue Date: 16 May 2024
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Srijan Banerjee
Gustavo Cabrera-Barjas
Jaime Tapia
Joã
o Paulo Fabi
Cedric Delattre
Aparna Banerjee
Trendmd:   
Cite this article:   
Srijan Banerjee,Gustavo Cabrera-Barjas,Jaime Tapia, et al. Characterization of Chilean hot spring-origin Staphylococcus sp. BSP3 produced exopolysaccharide as biological additive[J]. Natural Products and Bioprospecting, 2024, 14(2): 3-3.
URL:  
http://npb.kib.ac.cn/EN/10.1007/s13659-024-00436-0     OR     http://npb.kib.ac.cn/EN/Y2024/V14/I2/3
[1] Moldes AB, Vecino X, Cruz JM. Nutraceuticals and food additives. In: Current developments in biotechnology and bioengineering. Amsterdam: Elsevier; 2017. p. 143-64. https://doi.org/10.1016/B978-0-444-63666-9.00006-6.
[2] Faustino M, Veiga M, Sousa P, Costa E, Silva S, Pintado M. Agro-food byproducts as a new source of natural food additives. Molecules. 2019;24(6):1056. https://doi.org/10.3390/molecules24061056.
[3] Ale EC, Perezlindo MJ, Pavón Y, Peralta GH, Costa S, Sabbag N, et al. Technological, rheological and sensory characterizations of a yogurt containing an exopolysaccharide extract from Lactobacillus fermentum Lf2, a new food additive. Food Res Int. 2016;90:259-67. https://doi.org/10.1016/j.foodres.2016.10.045.
[4] Wang J, Salem DR, Sani RK. Extremophilic exopolysaccharides: a review and new perspectives on engineering strategies and applications. Carbohydr Polym. 2019;205:8-26. https://doi.org/10.1016/j.carbpol.2018.10.011.
[5] Asgher M, Qamar SA, Iqbal HMN. Microbial exopolysaccharide-based nano-carriers with unique multi-functionalities for biomedical sectors. Biologia (Bratisl). 2021;76(2):673-85. https://doi.org/10.2478/s11756-020-00588-7.
[6] Shi Y, Huang J, Zeng G, Gu Y, Chen Y, Hu Y, et al. Exploiting extracellular polymeric substances (EPS) controlling strategies for performance enhancement of biological wastewater treatments: an overview. Chemosphere. 2017;180:396-411. https://doi.org/10.1016/j.chemosphere.2017.04.042.
[7] Radchenkova N, Panchev I, Vassilev S, Kuncheva M, Dobreva S, Kambourova M. Continuous cultivation of a thermophilic bacterium Aeribacillus pallidus 418 for production of an exopolysaccharide applicable in cosmetic creams. J Appl Microbiol. 2015;119(5):1301-9. https://doi.org/10.1111/jam.12944.
[8] Llamas I, Mata JA, Tallon R, Bressollier P, Urdaci MC, Quesada E, et al. Characterization of the exopolysaccharide produced by Salipiger mucosus a3t, a halophilic species belonging to the alphaproteobacteria, isolated on the spanish mediterranean seaboard. Mar Drugs. 2010;8(8):2240-51. https://doi.org/10.3390/md8082240.
[9] Llamas I, Amjres H, Mata JA, Quesada E, Béjar V. The potential biotechnological applications of the exopolysaccharide produced by the halophilic bacterium Halomonas almeriensis. Molecules. 2012;17(6):7103-20. https://doi.org/10.3390/molecules17067103.
[10] Rossi F, De Philippis R. Role of cyanobacterial exopolysaccharides in phototrophic biofilms and in complex microbial mats. Life. 2015;5(2):1218-38. https://doi.org/10.3390/life5021218.
[11] Fan Y, Wang J, Gao C, Zhang Y, Du W. A novel exopolysaccharide-producing and long-chain n-alkane degrading bacterium Bacillus licheniformis strain DM-1 with potential application for in-situ enhanced oil recovery. Sci Rep. 2020;10(1):8519. https://doi.org/10.1038/s41598-020-65432-z.
[12] Gupta PL, Rajput M, Oza T, Trivedi U, Sanghvi G. Eminence of microbial products in cosmetic industry. Nat Prod Bioprospect. 2019;9(4):267-78. https://doi.org/10.1007/s13659-019-0215-0.
[13] Wang Z, Wu J, Zhu L, Zhan X. Characterization of xanthan gum produced from glycerol by a mutant strain Xanthomonas campestris CCTCC M2015714. Carbohydr Polym. 2017;157:521-6. https://doi.org/10.1016/j.carbpol.2016.10.033.
[14] Rehm BHA, Valla S. Bacterial alginates: biosynthesis and applications. Appl Microbiol Biotechnol. 1997;48(3):281-8. https://doi.org/10.1007/s002530051051.
[15] Gongi W, Cordeiro N, Pinchetti JLG, Ben OH. Functional, rheological, and antioxidant properties of extracellular polymeric substances produced by a thermophilic cyanobacterium Leptolyngbya sp. J Appl Phycol. 2022;34(3):1423-34. https://doi.org/10.1007/s10811-022-02695-1.
[16] Schiano Moriello V, Lama L, Poli A, Gugliandolo C, Maugeri TL, Gambacorta A, et al. Production of exopolysaccharides from a thermophilic microorganism isolated from a marine hot spring in flegrean areas. J Ind Microbiol Biotechnol. 2003;30(2):95-101. https://doi.org/10.1007/s10295-002-0019-8.
[17] Xu Z, Guo Q, Zhang H, Wu Y, Hang X, Ai L. Exopolysaccharide produced by Streptococcus thermophiles S-3: molecular, partial structural and rheological properties. Carbohydr Polym. 2018;194:132-8. https://doi.org/10.1016/j.carbpol.2018.04.014.
[18] Zhao N, Yu T, Yan F. Probiotic role and application of thermophilic Bacillus as novel food materials. Trends Food Sci Technol. 2023;138:1-15. https://doi.org/10.1016/j.tifs.2023.05.020.
[19] Gupta GN, Srivastava S, Khare SK, Prakash V. Extremophiles: an overview of microorganism from extreme environment. Int J Agric Environ Biotechnol. 2014;7(2):371. https://doi.org/10.5958/2230-732X.2014.00258.7.
[20] Jin M, Gai Y, Guo X, Hou Y, Zeng R. Properties and applications of extremozymes from deep-sea extremophilic microorganisms: a mini review. Mar Drugs. 2019;17(12):656. https://doi.org/10.3390/md17120656.
[21] van den Burg B. Extremophiles as a source for novel enzymes. Curr Opin Microbiol. 2003;6(3):213-8. https://doi.org/10.1016/S1369-5274(03)00060-2.
[22] Beeler E, Singh OV. Extremophiles as sources of inorganic bio-nanoparticles. World J Microbiol Biotechnol. 2016;32(9):156. https://doi.org/10.1007/s11274-016-2111-7.
[23] Seckbach J, Oren A (2000) Extremophilic microorganisms as candidates for extraterrestrial life. In: Hoover RB, editor. p. 89-95. https://doi.org/10.1117/12.411613.
[24] Kristjnsson JK, Hreggvidsson GO. Ecology and habitats of extremophiles. World J Microbiol Biotechnol. 1995;11(1):17-25. https://doi.org/10.1007/BF00339134.
[25] Zgonik V, Mulec J, Eleršek T, Ogrinc N, Jamnik P, Ulrih NP. Extremophilic microorganisms in central Europe. Microorganisms. 2021;9(11):2326. https://doi.org/10.3390/microorganisms9112326.
[26] Poli A, Finore I, Romano I, Gioiello A, Lama L, Nicolaus B. Microbial diversity in extreme marine habitats and their biomolecules. Microorganisms. 2017;5(2):25. https://doi.org/10.3390/microorganisms5020025.
[27] Kambourova M, Radchenkova N, Tomova I, Bojadjieva I. Thermophiles as a promising source of exopolysaccharides with interesting properties. In: Biotechnology of extremophiles. Berlin: Springer International Publishing; 2016. p. 117-39. https://doi.org/10.1007/978-3-319-13521-2_4.
[28] Flemming HC. Eps—then and now. Microorganisms. 2016;4(4):41. https://doi.org/10.3390/microorganisms4040041.
[29] Webster GK, Craig RA, Pommerening CA, Acworth IN. Selection of pharmaceutical antioxidants by hydrodynamic voltammetry. Electroanalysis. 2012;24(6):1394-400. https://doi.org/10.1002/elan.201200071.
[30] Wang J, Salem DR, Sani RK. Two new exopolysaccharides from a thermophilic bacterium Geobacillus sp. WSUCF1: characterization and bioactivities. N Biotechnol. 2021;61:29-39. https://doi.org/10.1016/j.nbt.2020.11.004.
[31] Banerjee A, Rudra SG, Mazumder K, Nigam V, Bandopadhyay R. Structural and functional properties of exopolysaccharide excreted by a novel Bacillus anthracis (strain PFAB2) of hot spring origin. Indian J Microbiol. 2018;58(1):39-50. https://doi.org/10.1007/s12088-017-0699-4.
[32] Banerjee A, Breig SJM, Gómez A, Sánchez-Arévalo I, González-Faune P, Sarkar S, et al. Optimization and characterization of a novel exopolysaccharide from Bacillus haynesii camb6 for food applications. Biomolecules. 2022;12(6):834. https://doi.org/10.3390/biom12060834.
[33] Orellana R, Macaya C, Bravo G, Dorochesi F, Cumsille A, Valencia R, et al. Living at the frontiers of life: extremophiles in Chile and their potential for bioremediation. Front Microbiol. 2018. https://doi.org/10.3389/fmicb.2018.02309.
[34] Scherson RA, Thornhill AH, Urbina-Casanova R, Freyman WA, Pliscoff PA, Mishler BD. Spatial phylogenetics of the vascular flora of Chile. Mol Phylogenet Evol. 2017;112:88-95. https://doi.org/10.1016/j.ympev.2017.04.021.
[35] Sabando C, Ide W, Rodríguez-Díaz M, Cabrera-Barjas G, Castaño J, Bouza R, et al. A novel hydrocolloid film based on pectin, starch and Gunnera tinctoria and Ugni molinae plant extracts for wound dressing applications. Curr Top Med Chem. 2020;20(4):280-92. https://doi.org/10.2174/1568026620666200124100631.
[36] Liang X. Structural characterization and bioactivity of exopolysaccharide synthesized by Geobacillus sp Ts3-9 isolated from radioactive radon hot spring. Adv Biotechnol Microbiol. 2017;4(2). https://doi.org/10.19080/AIBM.2017.04.555635.
[37] Synytsya A, Novak M. Structural analysis of glucans. Ann Transl Med. 2014. https://doi.org/10.3978/j.issn.2305-5839.2014.02.07.
[38] Yao HYY, Wang JQ, Yin JY, Nie SP, Xie MY. A review of nmr analysis in polysaccharide structure and conformation: progress, challenge and perspective. Food Res Int. 2021;143: 110290. https://doi.org/10.1016/j.foodres.2021.110290.
[39] Jana UK, Kango N. Characteristics and bioactive properties of mannooligosaccharides derived from agro-waste mannans. Int J Biol Macromol. 2020;149:931-40. https://doi.org/10.1016/j.foodres.2021.110290.
[40] Gómez-Miranda B, Prieto A, Leal JA, Ahrazem O, Jiménez-Barbero J, Bernabé M. Differences among the cell wall galactomannans from Aspergillus wentii and Chaetosartorya chrysella and that of Aspergillus fumigatus. Glycoconj J. 2003;20(4):239-46. https://doi.org/10.1023/B:GLYC.0000025818.83019.e4.
[41] Kobayashi H, Suzuki J, Tanaka S, Kiuchi Y, Oyamada H, Iwadate N, et al. Structure of a cell wall mannan from the pathogenic yeast, Candida catenulata: assignment of 1H nuclear magnetic resonance chemical shifts of the inner α-1,6-linked mannose residues substituted by a side chain. Arch Biochem Biophys. 1997;341(1):70-4. https://doi.org/10.1006/abbi.1997.9939.
[42] Kobayashi H, Watanabe M, Komido M, Matsuda K, Ikeda-Hasebe T, Suzuki M, et al. Assignment of 1H and 13C NMR chemical shifts of a d-mannan composed of α-(1 → 2) and α-(1 → 6) linkages obtained from Candida kefyr IFO 0586 strain. Carbohydr Res. 1995;267(2):299-306. https://doi.org/10.1006/abbi.1997.9939.
[43] Feng L, Yin J, Nie S, Wan Y, Xie M. Structure and conformation characterization of galactomannan from seeds of Cassia obtusifolia. Food Hydrocoll. 2018;76:67-77. https://doi.org/10.1016/j.foodhyd.2017.06.008.
[44] Li Y, Liu H, Shi Y, Yan Q, You X, Jiang Z. Preparation, characterization, and prebiotic activity of manno-oligosaccharides produced from cassia gum by a glycoside hydrolase family 134 β-mannanase. Food Chem. 2020;309:125709. https://doi.org/10.1016/j.foodchem.2019.125709.
[45] Casillo A, Fabozzi A, Russo Krauss I, Parrilli E, Biggs CI, Gibson MI, et al. Physicochemical approach to understanding the structure, conformation, and activity of mannan polysaccharides. Biomacromol. 2021;22(4):1445-57. https://doi.org/10.1021/acs.biomac.0c01659.
[46] Rugar D, Hansma P. Atomic force microscopy. Phys Today. 1990;43(10):23-30. https://doi.org/10.1063/1.881238.
[47] Cordell D, Unsworth MJ, Díaz D. Imaging the laguna del maule volcanic field, central chile using magnetotellurics: evidence for crustal melt regions laterally-offset from surface vents and lava flows. Earth Planet Sci Lett. 2018;488:168-80. https://doi.org/10.1016/j.epsl.2018.01.007.
[48] Taran Y, Kalacheva E. Acid sulfate-chloride volcanic waters; Formation and potential for monitoring of volcanic activity. J Volcanol Geoth Res. 2020;405: 107036. https://doi.org/10.1016/j.jvolgeores.2020.107036.
[49] Lahsen A. Chilean geothermal resources and their possible utilization. Geothermics. 1988;17(2-3):401-10. https://doi.org/10.1016/0375-6505(88)90068-5.
[50] Kambourova M, Mandeva R, Dimova D, Poli A, Nicolaus B, Tommonaro G. Production and characterization of a microbial glucan, synthesized by Geobacillus tepidamans V264 isolated from Bulgarian hot spring. Carbohydr Polym. 2009;77(2):338-43. https://doi.org/10.1016/j.carbpol.2009.01.004.
[51] Sardari RRR, Kulcinskaja E, Ron EYC, Björnsdóttir S, Friðjónsson ÓH, Hreggviðsson GÓ, et al. Evaluation of the production of exopolysaccharides by two strains of the thermophilic bacterium Rhodothermus marinus. Carbohydr Polym. 2017;156:1-8. https://doi.org/10.1016/j.carbpol.2016.08.062.
[52] Feng F, Zhou Q, Yang Y, Zhao F, Du R, Han Y, et al. Characterization of highly branched dextran produced by Leuconostoc citreum B-2 from pineapple fermented product. Int J Biol Macromol. 2018;113:45-50. https://doi.org/10.1016/j.ijbiomac.2018.02.119.
[53] Wang Y, Li C, Liu P, Ahmed Z, Xiao P, Bai X. Physical characterization of exopolysaccharide produced by Lactobacillus plantarum KF5 isolated from Tibet Kefir. Carbohydr Polym. 2010;82(3):895-903. https://doi.org/10.1016/j.carbpol.2010.06.013.
[54] Jana UK, Kango N. Characteristics and bioactive properties of mannooligosaccharides derived from agro-waste mannans. Int J Biol Macromol. 2020;149:931-40. https://doi.org/10.1016/j.ijbiomac.2020.01.304.
[55] Arciola CR, Campoccia D, Gamberini S, Donati ME, Pirini V, Visai L, et al. Antibiotic resistance in exopolysaccharide-forming Staphylococcus epidermidis clinical isolates from orthopaedic implant infections. Biomaterials. 2005;26(33):6530-5. https://doi.org/10.1016/j.biomaterials.2005.04.031.
[56] Joyce JG, Abeygunawardana C, Xu Q, Cook JC, Hepler R, Przysiecki CT, et al. Isolation, structural characterization, and immunological evaluation of a high-molecular-weight exopolysaccharide from Staphylococcus aureus. Carbohydr Res. 2003;338(9):903-22. https://doi.org/10.1016/S0008-6215(03)00045-4.
[57] Marshall VM, Rawson HL. Effects of exopolysaccharide-producing strains of thermophilic lactic acid bacteria on the texture of stirred yoghurt. Int J Food Sci Technol. 1999;34(2):137-43. https://doi.org/10.1046/j.1365-2621.1999.00245.x.
[58] Nicolaus B, Kambourova M, Oner ET. Exopolysaccharides from extremophiles: from fundamentals to biotechnology. Environ Technol. 2010;31(10):1145-58. https://doi.org/10.1080/09593330903552094.
[59] Lee J, Cho YS, Jung H, Choi I. Pharmacological regulation of oxidative stress in stem cells. Oxid Med Cell Longev. 2018;2018:1-13. https://doi.org/10.1155/2018/4081890.
[60] Kusumawati I, Indrayanto G. Natural antioxidants in cosmetics. Amsterdam: Elsevier; 2013. p. 485-505. https://doi.org/10.1016/B978-0-444-59603-1.00015-1.
[61] Maraveas C, Bayer IS, Bartzanas T. Recent advances in antioxidant polymers: from sustainable and natural monomers to synthesis and applications. Polymers (Basel). 2021;13(15):2465. https://doi.org/10.3390/polym13152465.
[62] Hu C, You G, Liu J, Du S, Zhao X, Wu S. Study on the mechanisms of the lubricating oil antioxidants: experimental and molecular simulation. J Mol Liq. 2021;324:115099. https://doi.org/10.1016/j.molliq.2020.115099.
[63] Dalton TP, Shertzer HG, Puga A. Regulation of gene expression by reactive oxygen. Annu Rev Pharmacol Toxicol. 1999;39(1):67-101. https://doi.org/10.1146/annurev.pharmtox.39.1.67.
[64] Celestino MT, Magalhães de UO, Fraga AGM, Carmo do FA, Lione V, Castro HC, et al. Rational use of antioxidants in solid oral pharmaceutical preparations. Braz J Pharm Sci. 2012;48(3):405-15. https://doi.org/10.1590/S1984-82502012000300007.
[65] Williams GM, Iatropoulos MJ, Whysner J. Safety assessment of butylated hydroxyanisole and butylated hydroxytoluene as antioxidant food additives. FCT. 1999;37(9-10):1027-38. https://doi.org/10.1016/S0278-6915(99)00085-X.
[66] Okubo T, Yokoyama Y, Kano K, Kano I. Molecular mechanism of cell death induced by the antioxidant tert-butylhydroxyanisole in human monocytic leukemia u937 cells. Biol Pharm Bull. 2004;27(3):295-302. https://doi.org/10.1248/bpb.27.295.
[67] Hirose M. Carcinogenicity of antioxidants bha, caffeic acid, sesamol, 4-methoxyphenol and catechol at low doses, either alone or in combination, and modulation of their effects in a rat medium-term multi-organ carcinogenesis model. Carcinogenesis. 1998;19(1):207-12. https://doi.org/10.1093/carcin/19.1.207.
[68] Bibi A, Xiong Y, Rajoka MSR, Mehwish HM, Radicetti E, Umair M, et al. Recent advances in the production of exopolysaccharide (eps) from Lactobacillus spp. and its application in the food industry: a review. Sustainability. 2021;13(22):12429. https://doi.org/10.3390/su132212429.
[69] Alizadeh-Sani M, Hamishehkar H, Khezerlou A, Azizi-Lalabadi M, Azadi Y, Nattagh-Eshtivani E, et al. Bioemulsifiers derived from microorganisms: applications in the drug and food industry. Adv Pharm Bull. 2018;8(2):191-9. https://doi.org/10.15171/apb.2018.023.
[70] Song B, Zhu W, Song R, Yan F, Wang Y. Exopolysaccharide from Bacillus vallismortis WF4 as an emulsifier for antifungal and antipruritic peppermint oil emulsion. Int J Biol Macromol. 2019;125:436-44. https://doi.org/10.1016/j.ijbiomac.2018.12.080.
[71] Gupta BS, Ako JE. Application of guar gum as a flocculant aid in food processing and potable water treatment. Eur Food Res Technol. 2005;221(6):746-51. https://doi.org/10.1007/s00217-005-0056-4.
[72] Kurniawan SB, Imron MF, Chik CENCE, Owodunni AA, Ahmad A, Alnawajha MM, et al. What compound inside biocoagulants/bioflocculants is contributing the most to the coagulation and flocculation processes? Sci Total Environ. 2022;806:150902. https://doi.org/10.1016/j.scitotenv.2021.150902.
[73] Gupta A, Kumar M, Sharma R, Tripathi R, Kumar V, Thakur IS. Screening and characterization of bioflocculant isolated from thermotolerant Bacillus sp. ISTVK1 and its application in wastewater treatment. Environ Technol Innov. 2023;30:103135. https://doi.org/10.1016/j.eti.2023.103135.
[74] Okaiyeto K, Nwodo U, Mabinya L, Okoh A. Characterization of a bioflocculant produced by a consortium of halomonas sp. Okoh and Micrococcus sp. Leo. Int J Environ Res Public Health. 2013;10(10):5097-110. https://doi.org/10.3390/ijerph10105097.
[75] Mathivanan K, Chandirika JU, Vinothkanna A, Govindarajan RK, Meng D, Yin H. Characterization and biotechnological functional activities of exopolysaccharides produced by Lysinibacillus fusiformis kmntt-10. J Polym Environ. 2021;29(6):1742-51. https://doi.org/10.1007/s10924-020-01986-3.
[76] Trabelsi I, Ktari N, Triki M, Bkhairia I, Ben Slima S, Sassi Aydi S, et al. Physicochemical, techno-functional, and antioxidant properties of a novel bacterial exopolysaccharide in cooked beef sausage. Int J Biol Macromol. 2018;111:11-8. https://doi.org/10.1016/j.ijbiomac.2017.12.127.
[77] Devi PB, Kavitake D, Shetty PH. Physico-chemical characterization of galactan exopolysaccharide produced by Weissella confusa KR780676. Int J Biol Macromol. 2016;93:822-8. https://doi.org/10.1016/j.ijbiomac.2016.09.054.
[78] Insulkar P, Kerkar S, Lele SS. Purification and structural-functional characterization of an exopolysaccharide from Bacillus licheniformis PASS26 with in-vitro antitumor and wound healing activities. Int J Biol Macromol. 2018;120:1441-50. https://doi.org/10.1016/j.ijbiomac.2018.09.147.
[79] Mohanasrinivasan V, Mishra M, Paliwal JS, Singh SKR, Selvarajan E, Suganthi V, et al. Studies on heavy metal removal efficiency and antibacterial activity of chitosan prepared from shrimp shell waste. 3 Biotech. 2014;4(2):167-75. https://doi.org/10.1007/s13205-013-0140-6.
[80] Molina Olivera MG, Rivera Bravo DP, Salesianos Impresores S.A. Compendio Normativo de los servicios sanitarios: agua potable y saneamiento. 2018. https://www.siss.gob.cl/586/articles-16991_recurso_1.pdf.
[81] Fierro P, Tapia J, Bertrán C, Acuña C, Vargas-Chacoff L. Assessment of heavy metal contamination in two edible fish species and water from north patagonia estuary. Appl Sci. 2021;11(6):2492. https://doi.org/10.3390/app11062492.
[82] Tamura K, Stecher G, Kumar S. MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol. 2021;38(7):3022-7. https://doi.org/10.1093/molbev/msab120.
[83] Tamura K. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol. 1993;10(3):512-26. https://doi.org/10.1093/oxfordjournals.molbev.a040023.
[84] Rimada PS, Abraham AG. Comparative study of different methodologies to determine the exopolysaccharide produced by kefir grains in milk and whey. Lait. 2003;83(1):79-87. https://doi.org/10.1051/lait:2002051.
[85] Patnaik SS, Bunning TJ, Adams WW, Wang J, Labes MM. Atomic force microscopy and high-resolution scanning electron microscopy study of the banded surface morphology of hydroxypropyl cellulose thin films. Macromolecules. 1995;28(1):393-5. https://doi.org/10.1021/ma00105a058.
[86] Malkin AJ, Kuznetsov YuG, McPherson A. In situ atomic force microscopy studies of surface morphology, growth kinetics, defect structure and dissolution in macromolecular crystallization. J Cryst Growth. 1999;196(2-4):471-88. https://doi.org/10.1016/S0022-0248(98)00823-9.
[87] Ruch RJ, Cheng S, Klaunig JE. Prevention of cytotoxicity and inhibition of intercellular communication by antioxidant catechins isolated from Chinese green tea. Carcinogenesis. 1989;10(6):1003-8. https://doi.org/10.1093/carcin/10.6.1003.
[88] Nitha B, De S, Adhikari SK, Devasagayam TPA, Janardhanan KK. Evaluation of free radical scavenging activity of morel mushroom, Morchella esculenta mycelia: a potential source of therapeutically useful antioxidants. Pharm Biol. 2010;48(4):453-60. https://doi.org/10.3109/13880200903170789.
[89] Benzie IFF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the frap assay. Anal Biochem. 1996;239(1):70-6. https://doi.org/10.1006/abio.1996.0292.
[90] Pu L, Zeng YJ, Xu P, Li FZ, Zong MH, Yang JG, et al. Using a novel polysaccharide BM2 produced by Bacillus megaterium strain PL8 as an efficient bioflocculant for wastewater treatment. Int J Biol Macromol. 2020;162:374-84. https://doi.org/10.1016/j.ijbiomac.2020.06.167.
[91] Cooper DG, Goldenberg BG. Surface-active agents from Two Bacillus species. Appl Environ Microbiol. 1987;53(2):224-9. https://doi.org/10.1128/aem.53.2.224-229.1987.
[92] Wang JC, Kinsella JE. Functional properties of novel proteins: alfalfa leaf protein. J Food Sci. 1976;41(2):286-92. https://doi.org/10.1111/j.1365-2621.1976.tb00602.x.
[93] Kumari S, Kumar Annamareddy SH, Abanti S, Kumar RP. Physicochemical properties and characterization of chitosan synthesized from fish scales, crab and shrimp shells. Int J Biol Macromol. 2017;104:1697-705. https://doi.org/10.1016/j.ijbiomac.2017.04.119.
[1] Teresa S. Catalá, Linn G. Speidel, Arlette Wenzel-Storjohann, Thorsten Dittmar, Deniz Tasdemir. Bioactivity profile of dissolved organic matter and its relation to molecular composition[J]. Natural Products and Bioprospecting, 2023, 13(5): 32-32.
[2] Luan Wen, Zhou-Wei Wu, Li-Wu Lin, Abdulbaset Al-Romaima, Xing-Rong Peng, Ming-Hua Qiu. Structural characterizations and α-glucosidase inhibitory activities of four Lepidium meyenii polysaccharides with different molecular weights[J]. Natural Products and Bioprospecting, 2023, 13(3): 18-18.
[3] Manar Adam, Gihan O. M. Elhassan, Sakina Yagi, Fatma Sezer Senol, Ilkay Erdogan Orhan, Abdel Azim Ahmed, Thomas Efferth. In Vitro Antioxidant and Cytotoxic Activities of 18 Plants from the Erkowit Region, Eastern Sudan[J]. Natural Products and Bioprospecting, 2018, 8(2): 97-105.
[4] Shan Zhang, Lu Xu, Yang-Xi Liu, Hai-Yan Fu, Zuo-Bing Xiao, Yuan-Bin She. Characterization of Aroma-Active Components and Antioxidant Activity Analysis of E-jiao (Colla Corii Asini) from Different Geographical Origins[J]. Natural Products and Bioprospecting, 2018, 8(2): 71-82.
[5] Daniela Batista,Pedro L.Falé,Maria L.Serralheiro,Maria E.Araújo,Paulo J.A.Madeira,Carlos Borges,Isabel Torgal,Margarida Goulart,Jorge Justino,Alice Martins,Amélia P.Rauter. New In Vitro Studies on the Bioprofile of Genista tenera Antihyperglycemic Extract[J]. Natural Products and Bioprospecting, 2015, 5(6): 277-285.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed