Natural Products and Bioprospecting    2024, Vol. 14 Issue (5) : 36-36     DOI: 10.1007/s13659-024-00458-8
ORIGINAL ARTICLES |
Ethnopharmacological study on Adenosma buchneroides Bonati inhibiting inflammation via the regulation of TLR4/MyD88/NF-κB signaling pathway
Yuru Shi, Xiaoqian Zhang, Shengji Pei, Yuhua Wang
Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Lanhei Road 132, Heilongtan, Kunming, 650201, Yunnan, China
Download: PDF(3282 KB)   HTML ()  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  Adenosma buchneroides Bonati, also known as fleagrass, is an important medicinal plant used by the Akha (Hani) people of China for treating inflammation-related skin swelling, acne, and diarrhoea, among other conditions. In this study, we aimed to evaluate the anti-inflammatory activities and explore the molecular mechanisms of fleagrass on treating skin swelling and acne. The results demonstrated that fleagrass inhibited the enzymatic activities of 5-LOX and COX-2 in vitro, and decreased the release of NO, IL-6, TNF-α, and IL-10 in the LPS-induced RAW264.7 macrophages. The levels of proteins associated with the nuclear factor-kappa B (NF-κB) pathway were examined by western blotting and immunofluorescence, demonstrating that fleagrass downregulated the expression of TLR4, MyD88, NF-κB/p65, and iNOS and blocked the nuclear translocation of NF-κB/p65. Furthermore, fleagrass exhibited acute anti-inflammatory activity in paw oedema models. The results confirm that fleagrass exhibits remarkable anti-inflammatory activity and can be used in alleviating inflammation, suggesting that fleagrass has the potential to be a novel anti-inflammatory agent.
Keywords Fleagrass      Anti-inflammatory activities      TLR4/MyD88/NF-κB signaling pathway      Ethnopharmacology     
Fund:This work was funded by Plant Germplasm Resources Innovation Project of Chinese Academy of Sciences (No. KFJ-BRP-007-002) and Yunnan Revitalization Talent Support Program Industrial Innovation Talent Project (Fleagrass Planting and Mosquito Repellent Product Industrialization Research and Development).
Corresponding Authors: Yuhua Wang,E-mail:wangyuhua@mail.kib.ac.cn     E-mail: wangyuhua@mail.kib.ac.cn
Issue Date: 14 October 2024
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yuru Shi
Xiaoqian Zhang
Shengji Pei
Yuhua Wang
Trendmd:   
Cite this article:   
Yuru Shi,Xiaoqian Zhang,Shengji Pei, et al. Ethnopharmacological study on Adenosma buchneroides Bonati inhibiting inflammation via the regulation of TLR4/MyD88/NF-κB signaling pathway[J]. Natural Products and Bioprospecting, 2024, 14(5): 36-36.
URL:  
http://npb.kib.ac.cn/EN/10.1007/s13659-024-00458-8     OR     http://npb.kib.ac.cn/EN/Y2024/V14/I5/36
[1] Wang C, Zhang HX, Liu Q, Qi JF, Zhuang HF, Gou Y, Wang HB, Wang YH. A review of the aromatic genus adenosma: geographical distribution, traditional uses, phytochemistry and biological activities. J Ethnopharmacol. 2021;275: 114075. https://doi.org/10.1016/j.jep.2021.114075.
[2] Shen PQ, Sun HD, Pei SJ. Ethnobotany of fleagrass (Adenosma Buchneroides Bonati), a traditional cultivated plant of the Hani people, Xishuangbanna, Yunnan, China. In: The Museum, Belém: Ethnobiology: implications and applications: proceedings of the First International Congress of Ethnobiology. 1990.
[3] Gou Y, Fan RY, Pei SJ, Wang YH. Before it disappeared: ethnobotanical study of fleagrass (Adenosma buchneroides), a traditional aromatic plant used by the Akha people. J Ethnobiol Ethnomed. 2018;14:79. https://doi.org/10.1186/s13002-018-0277-9.
[4] Ma YP. Chemical components from Adenosma buchneroides Bonati and its repellent activity against Aedes albopictus. Kunming Institute of Botany, Chinese Academy of Sciences. 2018.
[5] Dalmas E, Tordjman J, Guerre-Millo M, Clément K. Macrophages and inflammation. In: Symonds M, editor. Adipose tissue biology. Springer: Cham; 2017. p. 229-55. https://doi.org/10.1007/978-3-319-52031-5_7.
[6] Bošković J, Dobričić V, Mihajlović M, Kotur-Stevuljević J, Čudina O. Synthesis, evaluation of enzyme inhibition and redox properties of potential dual COX-2 and 5-LOX inhibitors. Pharmaceuticals. 2023;16:549. https://doi.org/10.3390/ph16040549.
[7] Wellen KE, Hotamisligil GS. Inflammation, stress, and diabetes. J Clin Invest. 2005;115:1111-9. https://doi.org/10.1172/JCI25102.
[8] Aggarwal BB, Shishodia S, Sandur SK, Pandey MK, Sethi G. Inflammation and cancer: how hot is the link? Biochem Pharmacol. 2006;72:1605-21. https://doi.org/10.1016/j.bcp.2006.06.029.
[9] Libby P. Inflammation and cardiovascular disease mechanisms. Am J Clin Nutr. 2006;83:456S-460S. https://doi.org/10.1093/ajcn/83.2.456S.
[10] Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB. Oxidative stress, in-flammation, and cancer: how are they linked? Free Radical Biol Med. 2010;49:1603-16. https://doi.org/10.1016/j.freeradbiomed.2010.09.006.
[11] Ivashkiv LB. Inflammatory signaling in macrophages: transitions from acute to tolerant and alternative activation states. Eur J Immunol. 2011;41:2477-81. https://doi.org/10.1002/eji.201141783.
[12] Wang YJ, Wang VM, Chan CC. The role of anti-inflammatory agents in age-related macular degeneration (AMD) treatment. Eye. 2011;25:127-39. https://doi.org/10.1038/eye.2010.196.
[13] Simon RA. Adverse respiratory reactions to aspirin and nonsteroidal anti-inflammatory drugs. Curr Allergy Asthma Rep. 2004;4:17-24. https://doi.org/10.1007/s11882-004-0037-x.
[14] Suleyman H, Demircan B, Karagoz Y. Anti-inflammatory and side effects of cyclooxygenase inhibitors. Pharmacol Rep. 2007;59:247-58.
[15] Nucera E, Rienzo AD, Ricci AG, Buonomo A, Mezzacappa S, Schiavino D. Adverse reactions to nonsteroidal anti-inflammatory drugs and hypersensitivity to lipid transfer proteins. Adv Dermatol Alergol. 2016;33:309-10. https://doi.org/10.5114/ada.2016.61608.
[16] Kwiecień S, Magierowska K, Śliwowski Z, Wójcik D, Magierowski M, Brzozowski T. New insight into the mechanisms of gastroduodenal injury induced by nonsteroidal anti-inflammatory drugs: practical implications. Pol Intern Med. 2015;125:191-8. https://doi.org/10.20452/PAMW.2715.
[17] Molimau-Samasoni S, Woolner VH, Su’emalo TF, Robichon K, Patel V, Andreassend SK, Sheridan JP, Kawa TT, Gresham D, Miller D, Sinclair DJ, La Flamme AC, Melnik AV, Aron A, Dorrestein PC, Atkinson PH, Keyzers RA, Munkacsi AB. Functional genomics and metabolomics advance the ethnobotany of the Samoan traditional medicine “matalafi.” Proc Natl Acad Sci. 2021;118: e2100880118. https://doi.org/10.1073/pnas.2100880118.
[18] Tallima H, El Ridi R. Arachidonic acid: physiological roles and potential health benefits-a review. J Adv Res. 2018;11:33-41. https://doi.org/10.1016/j.jare.2017.11.004.
[19] Yang HX, Rothenberger E, Zhao T, Fan WWD, Kelly A, Attaya A, Fan DD, Panigrahy D, Deng JJ. Regulation of inflammation in cancer by dietary eicosanoids. Pharmacol Ther. 2023;248: 108455. https://doi.org/10.1016/j.pharmthera.2023.108455.
[20] Harizi H, Corcuff JB, Gualde N. Arachidonic-acid-derived eicosanoids: roles in biology and immunopathology. Trends Mol Med. 2008;14:461-9. https://doi.org/10.1016/j.molmed.2008.08.005.
[21] Rudrapal M, Eltayeb WA, Rakshit G, El-Arabey AA, Khan J, Aldosari SM, Alshehri B, Abdalla M. Dual synergistic inhibition of COX and LOX by potential chemicals from Indian daily spices investigated through detailed computational studies. Sci Rep. 2023;13:8656. https://doi.org/10.1038/s41598-023-35161-0.
[22] Shi HY, Lv FJ, Zhu ST, Wang QG, Zhang ST. Dual inhibition of 5-LOX and COX-2 suppresses esophageal squamous cell carcinoma. Cancer Lett. 2011;309:19-26. https://doi.org/10.1016/j.canlet.2011.05.010.
[23] Zimmermann GR, Lehar J, Keith CT. Multi-target therapeutics: when the whole is greater than the sum of the parts. Drug Discov Today. 2007;12:34-42. https://doi.org/10.1016/j.drudis.2006.11.008.
[24] Jaismy Jacob P, Manju SL, Ethiraj KR, Elias G. Safer anti-inflammatory therapy through dual COX-2/5-LOX inhibitors: a structure-based approach. Eur J Pharm Sci. 2018;121:356-81. https://doi.org/10.1016/j.ejps.2018.06.003.
[25] Kalaiselvan S, Rasool MK. Triphala herbal extract suppresses inflammatory responses in LPS-stimulated RAW264.7 macrophages and adjuvant-induced arthritic rats via inhibition of NF-κB pathway. J Immunot. 2016;13:509-25. https://doi.org/10.3109/1547691X.2015.1136010.
[26] Martich GD, Boujoukos AJ, Suffredini AF. Response of man to endotoxin. Immunobiology. 1993;187:403-16. https://doi.org/10.1016/S0171-2985(11)80353-0.
[27] Beutler B, Rietschel ET. Innate immune sensing and its roots: the story of endotoxin. Nat Rev Immunol. 2003;3:169-76. https://doi.org/10.1038/nri1004.
[28] Gorman A, Golovanov AP. Lipopolysaccharide structure and the phenomenon of low endotoxin recovery. Eur J Pharm Biopharm. 2022;180:289-307. https://doi.org/10.1016/j.ejpb.2022.10.006.
[29] Barton GM, Medzhitov R. Toll-like receptor signaling pathways. Science. 2003;300:1524-5. https://doi.org/10.1126/science.1085536.
[30] Kang JY, Lee JO. Structural biology of the toll-like receptor family. Annu Rev Biochem. 2011;80:917-41. https://doi.org/10.1146/annurev-biochem-052909-141507.
[31] Lee AJ, Cho KJ, Kim JH. MyD88-BLT2-dependent cascade contributes to LPS-induced interleukin-6 production in mouse macrophage. Exp Mol Med. 2015;47: e156. https://doi.org/10.1038/emm.2015.8.
[32] Sprague AH, Khalil RA. Inflammatory cytokines in vascular dysfunction and vascular disease. Biochem Pharmacol. 2009;78:539-52. https://doi.org/10.1016/j.bcp.2009.04.029.
[33] Wuertz K, Vo N, Kletsas D, Boos N. Inflammatory and catabolic signalling in intervertebral discs: the roles of NF-κB and MAP kinases. Eur Cells Mater. 2012;23:103-20. https://doi.org/10.22203/ecm.v023a08.
[34] Baeuerle PA, Henkel T. Function and activation of NF-kappa B in the immune system. Annu Rev Immunol. 1994;12:141-79. https://doi.org/10.1146/annurev.iy.12.040194.001041.
[35] Barnes PJ, Karin M. Nuclear factor-kappaB: a pivotal transcription factor in chronic inflammatory diseases. Int J Biochem Cell Biol. 1997;336:1066-71. https://doi.org/10.1056/NEJM199704103361506.
[36] May MJ, Ghosh S. Signal transduction through NF-kappa B. Immunol Today. 1998;19:80-8. https://doi.org/10.1016/s0167-5699(97)01197-3.
[37] Wang LQ, Lu SQ, Wang LY, Xin M, Xu YY, Wang G, Chen DQ, Chen LX, Liu S, Zhao F. Anti-inflammatory effects of three with anolides isolated from Physalis angulata L. in LPS-activated RAW 264.7 cells through blocking NF-κB signaling pathway. J Ethnopharmacol. 2021;276: 114186. https://doi.org/10.1016/j.jep.2021.114186.
[38] Chen J, Stark LA. Aspirin prevention of colorectal cancer: focus on NF-κB signalling and the nucleolus. Biomedicines. 2017;5:43. https://doi.org/10.3390/biomedicines5030043.
[39] Motolani A, Martin M, Sun MY, Lu T. 6.19-NF-κB and cancer therapy drugs. In: Kenakin T, editor. Comprehensive pharmacology. Amsterdam: Elsevier; 2022. p. 351-63. https://doi.org/10.1016/B978-0-12-820472-6.00064-5.
[40] Thompson CD, Zurko JC, Hanna BF, Hellenbrand DJ, Hanna A. The therapeutic role of interleukin-10 after spinal cord injury. J Neurotrauma. 2013;30:1311-24. https://doi.org/10.1089/neu.2012.2651.
[41] Ip WKE, Hoshi N, Shouval DS, Snapper S, Medzhitov R. Anti-inflammatory effect of IL-10 mediated by metabolic reprogramming of macrophages. Science. 2017;356:513-9. https://doi.org/10.1126/science.aal3535.
[42] Xu Y, Cheng BQ, Yu Z, Ding JK. A preliminary study on the new perfume plant Adenosma buchneroides Bonati. In: The Seventh China Academic Symposium on Fragrance; Hangzhou, Zhejiang, China. 2008.
[43] Xie WT. Extraction technology, quality standard and activity evaluation of essential oil of Adenosma buchneroides Bonati. Kunming Institute of Botany, Chinese Academy of Sciences. 2021.
[44] Zhang ZW, Jiang SQ, Tian HQ, Zeng Y, He K, Lin L, Yu FM. Ethyl acetate fraction from Nymphaea hybrida Peck modulates inflammatory responses in LPS-stimulated RAW 264.7 cells and acute inflammation murine models. J Ethnopharmacol. 2021;269: 113698. https://doi.org/10.1016/j.jep.2020.113698.
[45] Yang ML, Wang YD, Patelb G, Xue QW, Njatenge GSS, Cai SB, Cheng GG, Kai GY. In vitro and in vivo anti-inflammatory effects of different extracts from Epigynum auritum through down-regulation of NF-κB and MAPK signaling pathways. J Ethnopharmacol. 2020;261: 113105. https://doi.org/10.1016/j.jep.2020.113105.
[46] Chen HB, Luo CD, Liang JL, Zhang ZB, Lin GS, Wu JZ, Li CL, Tan LH, Yang XB, Su ZR, Xie JH, Zeng HF. Anti-inflammatory activity of coptisine free base in mice through inhibition of NF-κB and MAPK signaling pathways. Eur J Pharmacol. 2017;811:222-31. https://doi.org/10.1016/j.ejphar.2017.06.027.
[1] Md. Josim Uddin, Christian Zidorn. Traditional Herbal Medicines Against CNS Disorders from Bangladesh[J]. Natural Products and Bioprospecting, 2020, 10(6): 377-410.
[2] Joseph Sakah Kaunda, Ying-Jun Zhang. The Genus Solanum: An Ethnopharmacological, Phytochemical and Biological Properties Review[J]. Natural Products and Bioprospecting, 2019, 9(2): 77-137.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed