ORIGINAL ARTICLES |
|
|
|
|
|
Hydroxymethylation hydroxylation of 1,3-diarylpropene through a catalytic diastereoselective Prins reaction: cyclization logic and access to brazilin core |
Xin-Ting Hu1, Qing-Yan Cheng1, Yan-Ping Chen1, Kun Li1, Cai-Xian Yan2, Dashan Li1, Li-Dong Shao1 |
1. Yunnan Key Laboratory of Southern Medicinal Utilization, School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, China; 2. Yunnan Precious Metals Laboratory, Kunming Institute of Precious Metals, Kunming 650106, China |
|
|
Abstract A catalytic diastereoselective Prins reaction for hydroxymethylation and hydroxylation of 1,3-diarylpropene was successfully utilized to prepare various 1,3-dioxanes7 in 14-88% yields. Take advantage of the synthetic intermediate7h, the key B/C rings in brazilin core could be constructed by the sequential of Friedel-Crafts/Ullmann-Ma rather than Ullmann-Ma/Friedel-Crafts reactions.
|
Keywords
Catalytic Prins reaction
Hydroxymethylation/hydroxylation
1,3-Diarylpropene
Brazilin
|
Fund:The authors are grateful to the financial support from National Natural Science Foundation of China (82260683 and 22267024), Scientific and Technological Project of Yunnan Precious Metals Laboratory (YPML-2023050265 and YPML-2023050217), Yunnan Science and Technology Talent and Platform Program (202105AG070012), the Top Young Talent of Ten Thousand Talents Program of Yunnan Province (D. L. and L.-D. S.), the Start-up Fund of Yunnan University of Chinese Medicine (2019YZG03), and the Bioactive Ethnopharmacol Molecules Chemical Conversion and Application Innovation Team of Department of Education of Yunnan Province (2022). |
Corresponding Authors:
Li-Dong Shao,E-mail:shaolidong@ynucm.edu.cn
E-mail: shaolidong@ynucm.edu.cn
|
Issue Date: 01 August 2024
|
|
|
[1] Lin L-G, Liu Q-Y, Ye Y. Naturally occurring homoisoflavonoids and their pharmacological activities. Planta Med. 2014;80:1053-66. [2] Min BS, Cuong TD, Hung TM, Min BK, Shin BS, Woo MH. Compounds from the heartwood of Caesalpinia sappan and their anti-inflammatory activity. Bioorg Med Chem Lett. 2012;22:7436-9. [3] Moon C-K, Lee SH, Lee MO, Kim SG. Effects of brazilin on glucose oxidation, lipogenesis and therein involved enzymes in adipose tissues from diabetic KK-mice. Life Sci. 1993;53:1291-7. [4] Kim B, Kim S-H, Jeong S-J, Sohn EJ, Jung JH, Lee MH, Kim S-H. Brazilin induces apoptosis and G2/M arrest via inactivation of histone deacetylase in multiple myeloma U266 cells. J Agric Food Chem. 2012;60:9882-9. [5] Lin L-G, Xie H, Li H-L, Tong L-J, Tang C-P, Ke C-Q, Liu Q-F, Lin L-P, Geng M-Y, Jiang H, Zhao W-M, Ding J, Ye Y. Naturally occurring homoisoflavonoids function as potent protein tyrosine kinase inhibitors by c-Src-based high-throughput screening. J Med Chem. 2008;51:4419-29. [6] Javed U, Karim M, Jahng KC, Park J-G, Jahng Y. Enantioselective syntheses of (+)- and (-)-brazilin, Tetrahedron. Asymmetry. 2014;25:1270-4. [7] Jung Y, Kim I. Total synthesis of brazilin. J Org Chem. 2015;80:2001-5. [8] Jung Y, Kim I. A concise synthetic approach to brazilin via Pd-catalyzed allylic arylation. Org Biomol Chem. 2015;13:4331-5. [9] Gogoi D, Devi R, Pahari P, Sarma B, Das SK. cis-Diastereoselective synthesis of chroman-fused tetralins as B-ring-modified analogues of brazilin. Beilstein J Org Chem. 2016;12:2816-22. [10] Huang Y, Zhang J, Pettus TRR. Synthesis of (±)-brazilin using IBX. Org Lett. 2005;7:5841-4. [11] Pan C, Zeng X, Guan Y, Jiang X, Li L, Zhang H. Design and synthesis of brazilin-like compounds. Synlett. 2011;2011:425-9. [12] Wang X, Zhang H, Yang X, Zhao J, Pan C. Enantioselective total synthesis of (+)-brazilin, (-)-brazilein and (+)-brazilide A. Chem Commun. 2013;49:5405-7. [13] Yadav JS, Mishra AK, Das S. Formal synthesis of (±)-brazilin and total synthesis of (±)-brazilane. Tetrahedron. 2014;70:7560-6. [14] Arredondo V, Roa DE, Gutman ES, Huynh NO, Van Vranken DL. Total synthesis of (±)-brazilin using[4 + 1] palladium-catalyzed carbenylative annulation. J Org Chem. 2019;84:14745-59. [15] Lin C-C, Teng T-M, Tsai C-C, Liao H-Y, Liu R-S. Gold-catalyzed deoxygenative nazarov cyclization of 2,4-dien-1-als for stereoselective synthesis of highly substituted cyclopentenes. J Am Chem Soc. 2008;130:16417-23. [16] Huang S, Ou W, Li W, Xiao H, Pang Y, Zhou Y, Wang X, Yang X, Wang L. A total synthesis of (+)-brazilin. Tetrahedron Lett. 2020;61: 152052. [17] Wang X, Liu W, Duan S, Yang X, Zhang H. Research progress on the synthesis of brazilin-type natural products. Chin J Org Chem. 2015;35:1585-97. [18] Kim J, Kim I. Design and synthesis of a hybrid framework of indanone and chromane: total synthesis of a homoisoflavanoid, brazilane. Org Biomol Chem. 2018;16:89-100. [19] Grimm JAA, Zhou H, Properzi R, Leutzsch M, Bistoni G, Nienhaus J, List B. Catalytic asymmetric synthesis of cannabinoids and menthol from neral. Nature. 2023;615:634-9. [20] Díaz-Oviedo CD, Maji R, List B. The catalytic asymmetric intermolecular prins reaction. J Am Chem Soc. 2021;143:20598-604. [21] Peng B, Ma J, Guo J, Gong Y, Wang R, Zhang Y, Zeng J, Chen W-W, Ding K, Zhao B. A powerful chiral super brønsted C-H acid for asymmetric catalysis. J Am Chem Soc. 2022;144:2853-60. [22] Zhan R, Li D, Liu Y-L, Xie X-Y, Chen L, Shao L-D, Wang W-J, Chen Y-G. Structural elucidation, bio-inspired synthesis, and biological activities of cyclic diarylpropanes from Horsfieldia kingii. Tetrahedron. 2020;76: 131494. [23] Yang B, Dong K, Li X-S, Wu L-Z, Liu Q. Photoacid-enabled synthesis of indanes via formal[3 + 2] cycloaddition of benzyl alcohols with olefins. Org Lett. 2022;24:2040-4. [24] Zhang Z-J, Zhou X, Li D, Chen Y, Xiao W-W, Li R-T, Shao L-D. Aerobic copper-catalyzed intramolecular cascade oxidative isomerization/[4 + 4] cyclization of 2,2'-disubstituted stilbenes. J Org Chem. 2021;86:7609-24. [25] Wang M, Liu Y-L, Li D, Xiao W-W, Chen Y, Zhang H-L, Zhan R, Shao L-D. Biomimetic synthesis and anti-inflammatory effects of horsfiequinone A. Tetrahedron Lett. 2021;65: 152756. |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|