Natural Products and Bioprospecting    2023, Vol. 13 Issue (4) : 23-23     DOI: 10.1007/s13659-023-00387-y
REVIEW |
Terpenes extracted from marine sponges with antioxidant activity: a systematic review
Cintia Cristina Santi Martignago1, Beatriz Soares-Silva1, Julia Risso Parisi1, Lais Caroline Souza e Silva1, Renata Neves Granito1, Alessandra Mussi Ribeiro1, Ana Cláudia Muniz Renno1, Lorena Ramos Freitas de Sousa2, Anna Caroline Campos Aguiar1
1. Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim 136, Edifício Central, Santos, SP, 11015-020, Brazil;
2. Institute of Chemistry, Federal University of Catalão (UFCAT), Av. Dr. Lamartine Pinto de Avelar, 1120 Vila Chaud, Catalão, GO, 75704-020, Brazil
Download: PDF(1828 KB)   HTML ()  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  Marine biodiversity has emerged as a very promising resource of bioactive compounds and secondary metabolites from different sea organisms. The sponge’s secondary metabolites demonstrated various bioactivities and potential pharmacological properties. This systematic review of the literature focuses on the advances achieved in the antioxidant potential of marine sponges in vitro. The review was performed in accordance with PRISMA guidelines. The main inclusion criterion for analysis was articles with identification of compounds from terpene classes that demonstrate antioxidant activity in vitro. Searching in three different databases, two hundred articles were selected. After screening abstracts, titles and evaluating for eligibility of manuscripts 14 articles were included. The most performed analyzes to detect antioxidant activity were scavenging activity 2,2-diphenyl-1-picrylhydrazyl (DPPH) and measurement of intracellular reactive oxygen species (ROS). It was possible to identify 17 compounds of the terpene class with pronounced antioxidant activity in vitro. Scientific evidence of the studies included in this review was accessed by the GRADE analysis. Terpenes play an important ecological role, moreover these molecules have a pharmaceutical and industrial application.
Keywords Antioxidant      Marine drugs      Sponge      Free radical     
Fund:This work was supported by the FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo) A.C.M.R (2019/10228-5) and A.C.C.A. (2019/19708-0). FAPEG (Fundação de Amparo à Pesquisa do Estado de Goiás) L.R.F.S (202110267000075).
Corresponding Authors: Lorena Ramos Freitas de Sousa,E-mail:lorennarf@ufcat.edu.br;Anna Caroline Campos Aguiar,E-mail:annaccaguiar@gmail.com     E-mail: lorennarf@ufcat.edu.br;annaccaguiar@gmail.com
Issue Date: 08 October 2023
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Cintia Cristina Santi Martignago
Beatriz Soares-Silva
Julia Risso Parisi
Lais Caroline Souza e Silva
Renata Neves Granito
Alessandra Mussi Ribeiro
Ana Cláudia Muniz Renno
Lorena Ramos Freitas de Sousa
Anna Caroline Campos Aguiar
Trendmd:   
Cite this article:   
Cintia Cristina Santi Martignago,Beatriz Soares-Silva,Julia Risso Parisi, et al. Terpenes extracted from marine sponges with antioxidant activity: a systematic review[J]. Natural Products and Bioprospecting, 2023, 13(4): 23-23.
URL:  
http://npb.kib.ac.cn/EN/10.1007/s13659-023-00387-y     OR     http://npb.kib.ac.cn/EN/Y2023/V13/I4/23
1. Thakur N, Müller WEG. Biotechnological potential of marine sponges. Curr Sci. 2004;86:1506–12.
2. Hentschel U, Piel J, Degnan SM, Taylor MW. Genomic insights into the marine sponge microbiome. Nat Rev Microbiol. 2012;10:641–54.
3. Flórez LV, Biedermann PHW, Engl T, Kaltenpoth M. Defensive symbioses of animals with prokaryotic and eukaryotic microorganisms. Nat Prod Rep. 2015;32:904–36.
4. Pita L, Rix L, Slaby BM, Franke A, Hentschel U. The sponge holobiont in a changing ocean: from microbes to ecosystems. Microbiome. 2018;9:46.
5. Mayer AMS, Rodríguez AD, Taglialatela-Scafati O, Fusetani N. Marine pharmacology in 2012–2013: marine compounds with antibacterial, antidiabetic, antifungal, anti-inflammatory, antiprotozoal, antituberculosis, and antiviral activities; affecting the immune and nervous systems, and other miscellaneous mechanisms of action. Mar Drugs. 2017;15:273.
6. Khalifa SAM, Elias N, Farag MA, Chen L, Saeed A, Hegazy MEF, et al. Marine natural products: a source of novel anticancer drugs. Mar Drugs. 2019. https://doi.org/10.3390/md17090491.
7. Wali AF, Majid S, Rasool S, Shehada SB, Abdulkareem SK, Firdous A, et al. Natural products against cancer: review on phytochemicals from marine sources in preventing cancer. Saudi Pharm J. 2019. https://doi.org/10.1016/j.jsps.2019.04.013.
8. Donoghue M, Lemery SJ, Yuan W, He K, Sridhara R, Shord S, et al. Eribulin mesylate for the treatment of patients with refractory metastatic breast cancer: use of a “physician’s choice” control arm in a randomized approval trial. Clin Cancer Res. 2012;18:1496–505.
9. Mendiola J, Regalado EL, Díaz-García A, Thomas OP, Fernández-Calienes A, Rodríguez H, et al. In vitro antiplasmodial activity, cytotoxicity and chemical profiles of sponge species of Cuban coasts. Nat Prod Res. 2014;28:312–7.
10. Parra LLL, Bertonha AF, Severo IRM, Aguiar ACC, de Souza GE, Oliva G, et al. Isolation, derivative synthesis, and structure-activity relationships of antiparasitic bromopyrrole alkaloids from the marine sponge Tedania brasiliensis. J Nat Prod. 2018;81:188–202.
11. Yang F, Wang R-P, Xu B, Yu H-B, Ma G-Y, Wang G-F, et al. New antimalarial norterpene cyclic peroxides from Xisha Islands sponge Diacarnus megaspinorhabdosa. Bioorg Med Chem Lett. 2016;26:2084–7.
12. Kapoor S, Nailwal N, Kumar M, Barve K. Recent patents and discovery of anti-inflammatory agents from marine source. Recent Pat Inflamm Allergy Drug Discov. 2019;13:105–14.
13. Papas AM. Diet and antioxidant status. Food Chem Toxicol. 1990. https://doi.org/10.1016/S0278-6915(99)00088-5.
14. Utkina NK, Denisenko VA, Krasokhin VB. Diplopuupehenone, a new unsymmetrical puupehenone-related dimer from the marine sponge Dysidea sp. Tetrahedron Lett. 2011;52:3765–8.
15. Utkina NK, Makarchenko AE, Shchelokova OV, Virovaya MV. Antioxidant activity of phenolic metabolites from marine sponges. Chem Nat Compd. 2004;40:373–7.
16. Choi K, Hong J, Lee CO, Kim DK, Sim CJ, Im KS, et al. Cytotoxic furanosesterterpenes from a marine sponge Psammocinia sp. J Nat Prod. 2004;67:1186–9.
17. Trianto A, Hermawan I, de Voogd NJ, Tanaka J. Halioxepine, a new meroditerpene from an Indonesian sponge Haliclona sp. Chem Pharm Bull (Tokyo). 2011;59:1311–3.
18. Gegunde S, Alfonso A, Alonso E, Alvariño R, Botana LM. Gracilin-derivatives as lead compounds for anti-inflammatory effects. Cell Mol Neurobiol. 2020. https://doi.org/10.1007/s10571-019-00758-5.
19. Liu L, Wu W, Li J, Jiao WH, Liu LY, Tang J, et al. Two sesquiterpene aminoquinones protect against oxidative injury in HaCaT keratinocytes via activation of AMPKα/ERK-Nrf2/ARE/HO-1 signaling. Biomed Pharmacother. 2018. https://doi.org/10.1016/j.biopha.2018.02.034.
20. Rivera AP, Uy MM. In vitro antioxidant and cytotoxic activities of some marine sponges collected off misamis oriental coast, Philippines. E-Journal Chem. 2012;9:354–8.
21. Araújo TAT, de Souza A, Santana AF, Braga ARC, Custódio MR, Simões FR, et al. Comparison of different methods for spongin-like collagen extraction from marine sponges (Chondrilla caribensis and Aplysina fulva): physicochemical properties and in vitro biological analysis. Membranes. 2021. https://doi.org/10.3390/membranes11070522.
22. Longeon A, Copp BR, Quévrain E, Roué M, Kientz B, Cresteil T, et al. Bioactive indole derivatives from the South Pacific marine sponges Rhopaloeides odorabile and Hyrtios sp. Mar Drugs. 2011;9:879–88.
23. Shubina LK, Kalinovsky AI, Makarieva TN, Fedorov SN, Dyshlovoy SA, Dmitrenok PS, et al. New meroterpenoids from the marine sponge Aka coralliphaga. Nat Prod Commun. 2012;7:487–90.
24. Hagiwara K, Garcia Hernandez JE, Harper MK, Carroll A, Motti CA, Awaya J, et al. Puupehenol, a potent antioxidant antimicrobial meroterpenoid from a Hawaiian deep-water Dactylospongia sp. sponge. J Nat Prod. 2015;78:325–9.
25. Chen YC, Lu MC, El-Shazly M, Lai KH, Wu TY, Hsu YM, et al. Breaking down leukemia walls: heteronemin, a sesterterpene derivative, induces apoptosis in leukemia Molt4 cells through oxidative stress, mitochondrial dysfunction and induction of talin expression. Mar Drugs. 2018;16:212.
26. Nakarada Đ, Pejin B, Tommonaro G, Mojović M. Liposomal integration method for assessing antioxidative activity of water insoluble compounds towards biologically relevant free radicals: example of avarol. J Liposome Res. 2022. https://doi.org/10.1080/08982104.2019.1625378.
27. Bajpai VK, Bahuguna A, Kumar V, Khan I, Alrokayan SH, Khan HA, et al. Cellular antioxidant potential and inhibition of foodborne pathogens by a sesquiterpene ilimaquinone in cold storaged ground chicken and under temperature-abuse condition. Food Chem. 2022;373: 131392.
28. Leirós M, Sánchez JA, Alonso E, Rateb ME, Houssen WE, Ebel R, et al. Spongionella secondary metabolites protect mitochondrial function in cortical neurons against oxidative stress. Mar Drugs. 2014. https://doi.org/10.3390/md12020700.
29. Cheng MH, Huang HL, Lin YY, Tsui KH, Chen PC, Cheng SY, et al. BA6 induces apoptosis via stimulation of reactive oxygen species and inhibition of oxidative phosphorylation in human lung cancer cells. Oxid Med Cell Longev. 2019. https://doi.org/10.1155/2019/6342104.
30. Liu Z, Ren Z, Zhang J, Chuang CC, Kandaswamy E, Zhou T, et al. Role of ROS and nutritional antioxidants in human diseases. Front Physiol. 2018;9:477.
31. Abdelaleem ER, Samy MN, Desoukey SY, Liu M, Quinn RJ, Abdelmohsen UR. Marine natural products from sponges (Porifera) of the order Dictyoceratida. RSC Adv. 2020;10:34959–76.
32. Moher D, Liberati A, Tetzlaff J, Altman DG, Altman D, Antes G, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;21:6.
33. Bergamini C, Gambetti S, Dondi A, Cervellati C. Oxygen, reactive oxygen species and tissue damage. Curr Pharm Des. 2004;10:1611–26.
34. Lum H, Roebuck KA. Oxidant stress and endothelial cell dysfunction. Am J Physiol Cell Physiol. 2001;280:C719–41.
35. Papada E, Gioxari A, Brieudes V, Amerikanou C, Halabalaki M, Skaltsounis AL, et al. Bioavailability of terpenes and postprandial effect on human antioxidant potential. An open-label study in healthy subjects. Mol Nutr Food Res. 2018;62:1700751.
36. Popov AM, Stekhova SI, Utkina NK, Rebachuk NM. Antimicrobial and cytotoxic activity of sesquiterpenequinones and brominated diphenyl esters isolated from marine sponges. Pharm Chem J. 1999;33:71–3.
37. Tziveleka L-A, Vagias C, Roussis V. Natural products with anti-HIV activity from marine organisms. Curr Top Med Chem. 2003;3:1512–35.
38. Lee H-Y, Chung K, Hwang I, Gwak J, Park S, Ju B, et al. Activation of p53 with ilimaquinone and ethylsmenoquinone, marine sponge metabolites, induces apoptosis and autophagy in colon cancer cells. Mar Drugs. 2015;13:543–57.
39. Martínez-Poveda B, Quesada A, Medina MÁ. Pleiotropic role of puupehenones in biomedical research. Mar Drugs. 2017;15:325.
40. Bartikova H, Hanusova V, Skalova L, Ambroz M, Bousova I. Antioxidant, pro-oxidant and other biological activities of sesquiterpenes. Curr Top Med Chem. 2014;14:2478–94.
[1] Xiao-Li Cheng, Han-Xiang Li, Juan Chen, Ping Wu, Jing-Hua Xue, Zhong-Yu Zhou, Nia-He Xia, Xiao-Yi Wei. Bioactive Diarylheptanoids from Alpinia coriandriodora[J]. Natural Products and Bioprospecting, 2021, 11(1): 63-72.
[2] Marines Marli Gniech Karasawa, Chakravarthi Mohan. Fruits as Prospective Reserves of bioactive Compounds: A Review[J]. Natural Products and Bioprospecting, 2018, 8(5): 335-346.
[3] Shan Zhang, Lu Xu, Yang-Xi Liu, Hai-Yan Fu, Zuo-Bing Xiao, Yuan-Bin She. Characterization of Aroma-Active Components and Antioxidant Activity Analysis of E-jiao (Colla Corii Asini) from Different Geographical Origins[J]. Natural Products and Bioprospecting, 2018, 8(2): 71-82.
[4] Manar Adam, Gihan O. M. Elhassan, Sakina Yagi, Fatma Sezer Senol, Ilkay Erdogan Orhan, Abdel Azim Ahmed, Thomas Efferth. In Vitro Antioxidant and Cytotoxic Activities of 18 Plants from the Erkowit Region, Eastern Sudan[J]. Natural Products and Bioprospecting, 2018, 8(2): 97-105.
[5] Valery M. Dembitsky, Tatyana A. Gloriozova, Vladimir V. Poroikov. Pharmacological and Predicted Activities of Natural Azo Compounds[J]. Natural Products and Bioprospecting, 2017, 7(1): 151-169.
[6] Daniela Batista,Pedro L.Falé,Maria L.Serralheiro,Maria E.Araújo,Paulo J.A.Madeira,Carlos Borges,Isabel Torgal,Margarida Goulart,Jorge Justino,Alice Martins,Amélia P.Rauter. New In Vitro Studies on the Bioprofile of Genista tenera Antihyperglycemic Extract[J]. Natural Products and Bioprospecting, 2015, 5(6): 277-285.
[7] Seema PATEL. Yucca: A medicinally significant genus with manifold therapeutic attributes[J]. Natural Products and Bioprospecting, 2012, 2(6): 231-234.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed