Natural Products and Bioprospecting    2018, Vol. 8 Issue (5) : 369-390     DOI: 10.1007/s13659-018-0170-1
ORIGINAL ARTICLES |
Medicinal Plant Using Ground State Stabilization of Natural Antioxidant Curcumin by Keto-Enol Tautomerisation
S. Manimaran1, K. SambathKumar2, R. Gayathri3, K. Raja4, N. Rajkamal5, M. Venkatachalapathy5, G. Ravichandran6, C. Lourdu EdisonRaj6
1 P. G & Research Department of Physics, Thanthai Hans Roever College(Autonomous), Perambalur, Tamil Nadu 621220, India;
2 Post Graduate and Research Department of Physics, (NANO Science Divisions), A. A. Govt. Arts College, Villupuram, Tamil Nadu 605602, India;
3 Post Graduate and Research Department of Physics, Cauvery College for Women, Tiruchirappalli, Tamil Nadu, India;
4 Post Graduate and Research Department of Physics, Dr. R. K. Shanmugam College of Arts & Science, Kallakurichi, Tamil Nadu 606213, India;
5 Post Graduate and Research Department of Physics, Thiru. A. Govindasamy Govt Arts College, Tindivanam, Tamil Nadu 604002, India;
6 Post Graduate and Research Department of Chemistry, A. A. Govt. Arts College, Villupuram, Tamil Nadu 605602, India
Download: PDF(16597 KB)   HTML ()  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  Curcumin is a medicinal agent that exhibits anti-cancer properties and bioactive pigment in Turmeric has a huge therapeutic value. It has a keto-enol moiety that gives rise to many of its chemical properties. A recent study has shown that keto-enol tautomerisation at this moiety is implicated the effect of curcumin. The tautomerisation of curcumin in methanol, acetone and acetonitrile are used in nuclear magnetic resonance (1H, 13C) spectroscopy. It was characterized using UV, IR and Raman spectral values. The molecular electrostatic potential surface of the Curcumin has been visualized in electropositive potential in the region of the CH3+ group and most electronegative potential in the two oxygen atom has very strong binding group. In the following, the modality of structural and thermo dynamical parameters, electrophilicity (ω), chemical potential (μ), chemical hardness (η) and electronic charge transfer confirms the local reactivity. The rate constant of tautomerisation of curcumin shows strong temperature dependence. Molecular electrostatic potential and Temperature dependence of various thermodynamic properties like (Cp,m0, Sm0, and Hm0) is increase with increase in temperature for monomer and dimer of various electrical fields.
Keywords Curcumin      NMR      UV      HOMO-LUMO      MEP     
Corresponding Authors: S. Manimaran, K. SambathKumar     E-mail: drmanirec@gmail.com;sambathdft@gmail.com
Issue Date: 19 September 2018
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
S. Manimaran
K. SambathKumar
R. Gayathri
K. Raja
N. Rajkamal
M. Venkatachalapathy
G. Ravichandran
C. Lourdu EdisonRaj
Trendmd:   
Cite this article:   
S. Manimaran,K. SambathKumar,R. Gayathri, et al. Medicinal Plant Using Ground State Stabilization of Natural Antioxidant Curcumin by Keto-Enol Tautomerisation[J]. Natural Products and Bioprospecting, 2018, 8(5): 369-390.
URL:  
http://npb.kib.ac.cn/EN/10.1007/s13659-018-0170-1     OR     http://npb.kib.ac.cn/EN/Y2018/V8/I5/369
1. P.R. Holt, S. Katz, R. Kirshoff, Dig. Dis. Sci. 50, 2191-2193 (2005)
2. S. Shishodia, G. Sethi, B.B. Aggarwal, Ann N Y Acad. Sci. 1056, 206-217 (2005)
3. R.A. Sharma, A.J. Gescher, W.P. Steward, Eur. J. Cancer 41, 1955-1968 (2005)
4. N. Chainani-Wu, Safety and Anti-Inflammatory Activity of Curcumin (J. Altern. Complement, Med, 2003)
5. D. Chandra, S.S. Gupta, Indian J. Med. Res. 60, 138-140 (1972)
6. O.A. Hamed, N. Mehdawi, A.A. Taha, Iran J. Pharm. Res. 12, 47 (2013)
7. M. Iqbal, S.D. Sharma, Y. Okazaki, M. Fujisawa, S. Okada, Pharmacol. Toxicol. 1, 92 (2003)
8. M.L. Kuo, T.S. Huang, J.K. Lin, Biochim. Biophys. Acta. 2, 1317 (1996)
9. N. Sreejayan, M.N.A. Rao, J. Pharm. Pharmacol. 46, 1013-1016 (1994)
10. M. Subramanian, N. Sreejayan, M.N.A. Rao, T.D.A. Devasagayam, B.B. Singh, Mutat Res. 311, 249-255 (1994)
11. M.A. Azuine, V. Bhide, Nutr. Cancer. 17(1), 77-83 (1992)
12. T.H. Leu, M.C. Maa, Curr. Med. Chem. Anti-Canceer Agents 2, 357-370 (2000)
13. A. Fadda, F. Badria, K. El-Attar, Med. Chem. Res. 19, 413-430 (2010)
14. E.M. Al-Hujaily, A.G. Mohamed, I. Al-Sharif et al., Breast Cancer Res. Treat. 128, 97-107 (2011)
15. D. Kostova, T. Albena, T. Paul, Carcinogenesis 20, 911-919 (1999)
16. R. Wilken, M.S. Veena, M.B. Wang, E.S. Srivatsan, Mol. Cancer 10, 1-19 (2011)
17. A.E. Shchavlev, A.N. Pankratov, V.B. Borodulin, O.A. Chaplygina, J. Phys. Chem. A 109, 10982-10996 (2005)
18. A.D. Becke, J. Chem. Phys. 98, 5648-5652 (1993)
19. D. Cecily Mary Glory, R. Madivanane, K. Sambathkumar, Indian J. Pure Appl. Phys. 55, 638-648 (2017)
20. D.A. Kleinman, Phys. Rev. 126, 1977-1979 (1962)
21. B. Stuyven, Q. Chen, W.V.D. Moortel, H. Lipkens, B. Caerts, A. Aerts, L. Giebeler, B.V. Eerdenbrugh, P. Augustijns, G.V.D. Mooter, J.V. Humbeeck, J. Vanacken, V.V. Moshchalkov, J. Vermant, J.A. Martens, Chem. Commun. (2008). https://doi.org/10.1039/B816171B
22. R.M. Cornell, U. Schwertmann, Crystal Structure, The Iron Oxides (Wiley, New York, 2004), pp. 9-38
23. R.M. Cornell, U. Schwertmann, Electronic, Electrical and Magnetic Properties and Colour, The Iron Oxides (Wiley, New York, 2004), pp. 111-137
24. J. Lee, S. Zhang, S. Sun, Chem. Mater. 25, 1293-1304 (2013)
25. W. Cai, J. Wan, J. Colloid Interface Sci. 305, 366-370 (2007)
26. L. Wen, H. Yin, W. Li, K. Li, Acta Cryst. E 65, o2623 (2009)
27. K. Sambathkumar, Density Functional Theory Studies of Vibrational Spectra, Homo-Lumo, Nbo and Nlo Analysis of Some Cyclic and Heterocyclic Compounds (Ph.D thesis), Bharathidasan University, Tiruchirappalli, August 2014
28. J. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd edn. (Springer, New York, 2006)
29. H.O. Kalinowski, S. Berger, S. Braun, Carbon-13 NMR Spectroscopy (Wiley, Chichester, 1988)
30. K. Pihlaja, E. Kleinpeter (eds.), Carbon-13 Chemical Shifts in Structural and Sterochemical Analysis (VCH Publishers, Deerfield Beach, 1994)
31. K. Sambathkumar, S. Jeyavijayan, M. Arivazhagan, Spectrochim. Acta A 147, 124-138 (2015)
32. D. Cecily Mary Glory, K. Sambathkumar, R. Madivanane, G. Velmurugan, R. Gayathri, S. Nithiyanantham, M. Venkatachalapathy, N. Rajkamal, J. Mol. Structure 1163, 480-495 (2018)
33. M.J. Frisc, G.W. Trucks, H.B. Schlegal et al., GAUSSIAN 09, Revision A.02 (Gaussian Inc., Wallingford CT, 2009)
34. R. Dennington, T. Keith, J. Millam (eds.), GaussView, Version 4.1 (Semichem Inc., Shawnee Mission, 2007)
35. B. Latha, P. Kumaresan, S. Nithiyanantham, K. Sambathkumar, J. Mol. Struct. 1152, 351-360 (2018)
36. K. Sambathkumar, S. Nithiyanantham, J. Mater. Sci. 28, 6529-6543 (2017)
37. K. Sambathkumar, Spectrochim. Acta A 147, 51-66 (2015)
[1] Gao-Wei Li, Han Liu, Feng Qiu, Xiao-Juan Wang, Xin-Xiang Lei. Residual Dipolar Couplings in Structure Determination of Natural Products[J]. Natural Products and Bioprospecting, 2018, 8(4): 279-295.
[2] Ahmed Mahal, Ping Wu, Zi-Hua Jiang, Xiaoyi Wei. Synthesis and Cytotoxic Activity of Novel Tetrahydrocurcumin Derivatives Bearing Pyrazole Moiety[J]. Natural Products and Bioprospecting, 2017, 7(6): 461-469.
[3] Liang-Yan Liu, Han Sun, Christian Griesinger, Ji-Kai Liu. The Use of a Combination of RDC and Chiroptical Spectroscopy for Determination of the Absolute Configuration of Fusariumin A from the Fungus Fusarium sp[J]. Natural Products and Bioprospecting, 2016, 6(1): 41-48.
[4] Marie Pascaline Rahelivao, Margit Gruner, Hanta Andriamanantoanina, Ingmar Bauer, Hans-Joachim Knölker. Brown Algae(Phaeophyceae) from the Coast of Madagascar:preliminary Bioactivity Studies and Isolation of Natural Products[J]. Natural Products and Bioprospecting, 2015, 5(5): 223-235.
[5] Yuan Gao, Dong-Sheng Zhou, Ping Hai, Yan Li, Fei Wang. Hybrid Monoterpenoid Indole Alkaloids Obtained as Artifacts from Rauvolfia tetraphylla[J]. Natural Products and Bioprospecting, 2015, 5(5): 247-253.
[6] Alan Rodrigues Teixeira MACHADO, Gisele Avelar LAGE, Felipe da Silva MEDEIROS, José Dias de Souza FILHO, Lúcia Pinheiro Santos PIMENTA. Quantitative analysis of trigonelline in some Annona species by proton NMR spectroscopy[J]. Natural Products and Bioprospecting, 2013, 3(4): 158-160.
[7] Yuan GAO, Dong-Sheng ZHOU, Ling-Mei KONG, Ping HAI, Yan LI, Fei WANG, Ji-Kai LIU. Rauvotetraphyllines A–E, new indole alkaloids from Rauvolfia tetraphylla[J]. Natural Products and Bioprospecting, 2012, 2(2): 65-69.
[8] Yuan GAO, Fei WANG, Dong-Sheng ZHOU, Yan LI, Ji-Kai LIU. Three new indole alkaloids from Rauvolfia yunnanensis[J]. Natural Products and Bioprospecting, 2011, 1(3): 104-107.
[9] Sumalee SUPOTHINA, Urarat SRISANOH, Sutichai NITHITHANASILP, Kanoksri TASANATHAI, J. Jennifer LUANGSA-ARD, Chun-Ru LI, Masahiko ISAKA. Beauvericin production by the Lepidoptera pathogenic fungus Isaria tenuipes:Analysis of natural specimens, synnemata from cultivation, and mycelia from liquid-media fermentation[J]. Natural Products and Bioprospecting, 2011, 1(3): 112-115.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed