ORIGINAL ARTICLES |
|
|
|
|
|
The Anticancer Activities Phenolic Amides from the Stem of Lycium barbarum |
Pei-Feng Zhu1,2,3, Zhi Dai2,4, Bei Wang1,2,3, Xin Wei1,2,3, Hao-Fei Yu1,2,3, Zi-Ru Yan1,2,3, Xu-Dong Zhao4, Ya-Ping Liu1,3, Xiao-Dong Luo1,3 |
1 State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China; 2 University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China; 3 Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming 650201, People's Republic of China; 4 Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Kunming 650223, Yunnan, China |
|
|
Abstract Four new phenolic amides, 4-O-methylgrossamide (1), (E)-2-(4,5-dihydroxy-2-{3-[(4-hydroxyphenethyl)amino]-3-oxopropyl}-phenyl)-3-(4-hydroxy-3-methoxyphenyl)-N-(4-hydroxyphenethyl)acryl-amide (2), (Z)-lyciumamide C (3), (Z)-thoreliamide B (4), together with thirteen known phenolic amides were identified from the stem of Lycium barbarum. The structures of the new compounds were determined by spectroscopic methods. All compounds were evaluated for their anti-cancer activities against human glioma stem cell lines.
|
Keywords
Phenolic amides
Anticancer activities
Glioma stem cell
|
Corresponding Authors:
Ya-Ping Liu, Xiao-Dong Luo
E-mail: liuyaping@mail.kib.ac.cn;xdluo@mail.kib.ac.cn
|
Issue Date: 09 December 2017
|
|
|
[1] |
O. Potterat, Planta Med. 76, 7–19 (2010)<br />
|
[2] |
J. Zhang, S. Guan, J. Sun, T. Liu, P. Chen, R. Feng, X. Chen, W. Wu, M. Yang, D.A. Guo, Anal. Bioanal. Chem. 407, 581–595 (2015)<br />
|
[3] |
M. Forino, L. Tartaglione, C. Dell’Aversano, P. Ciminiello, Food Chem. 194, 1254–1259 (2016)<br />
|
[4] |
K. Gao, D.W. Ma, Y. Cheng, X.R. Tian, Y.Y. Lu, X.Y. Du, H.F. Tang, J.Z. Chen, J. Agric. Food Chem. 63, 1067–1075 (2015)<br />
|
[5] |
Y. Kajimoto, S. Kurokawa, Folia Pharmacol. 56, 151 (1960)<br />
|
[6] |
L.W. Xie, S.X. Li, Y.X. Xie, Y. Pan, R. Yu, X.H. Cheng, China J. Chin. Mater. Med. 39, 689–694 (2014)<br />
|
[7] |
R.C. Chang, K.F. So, Mol. Neurobiol. 28, 643–652 (2008)8. F. Mao, B. Xiao, Z. Jiang, J. Zhao, X. Huang, J. Guo, Med. Oncol. 28, 121–126 (2011)<br />
|
[9] |
A. Wawruszak, A. Czerwonka, K. Okla, W. Rzeski, Nat. Prod. Res. 30, 1993–1996 (2016)<br />
|
[10] |
W.D. Liu, F.X. Yi, Q.S. Hui, Acad. J. China. PLA 34, 179–180 (2013)<br />
|
[11] |
N.P. Seeram, L.S. Adams, Y. Zhang, D. Sand, D. Heber, J. Agric. Food Chem. 54, 9329–9339 (2006)12. U. Muhlenbeck, A. Kortenbusch, W. Barz, Phytochemistry 42, 1573–1579 (1996)[13]. J. Joven, E. Espinel, A. Rull, G. Aragones, E. Rodriguez-Gallego, J. Camps, V. Micol, M. Herranz-Lopez, J.A. Menendez, I. Borras, Biochim. Biophys. Acta 1820, 894–899 (2012)<br />
|
[14] |
K.H. Kim, S.U. Choi, M.W. Son, K.R. Lee, Chem. Pharm. Bull. 58, 1532–1535 (2010)<br />
|
[15] |
S. Wang, J.H. Suh, X. Zheng, Y. Wang, C.T. Ho, J. Agric. Food Chem. 65, 364–372 (2017)<br />
|
[16] |
T. Pisithkul, T.B. Jacobson, T.J. O’Brien, D.M. Stevenson, D. Amador-Noguez, Appl. Environ. Microbiol. 81, 5761–5772 (2015)<br />
|
[17] |
A.M. Seca, A.M. Silva, A.J. Silvestre, J.A. Cavaleiro, F.M. Domingues, C. Pascoal-Neto, Phytochemistry 58, 1219–1223 (2001)<br />
|
[18] |
J.X. Zhang, S.H. Guan, R.H. Feng, Y. Wang, Z.Y. Wu, Y.B. Zhang, X.H. Chen, K.S. Bi, D.A. Guo, J. Nat. Prod. 76, 51–58 (2013)<br />
|
[19] |
F. Ge, C.P. Tang, Y. Ye, Helv. Chim. Acta 91, 1023–1030 (2008)20. I. Sakakibara, Y. Ikeya, K. Hayashi, M. Okada, M. Maruno, Phytochemistry 38, 1003–1007 (1995)<br />
|
[21] |
I. Sakakibara, Y. Ikeya, K. Hayashi, H. Mitsuhashi, Phytochemistry 31, 3219–3223 (1992)<br />
|
[22] |
M.H. Chaves, N.F. Roque, Phytochemistry 46, 879–881 (1997)<br />
|
[23] |
Y. Zhao, Q.S. Zhao, Z.W. Lin, H.D. Sun, H.M. Wu, J.F. Xu, Acta Bot. Sin. 40, 1035–1039 (1998)<br />
|
[24] |
D.G. Lee, Y. Park, M.R. Kim, H.J. Jung, Y.B. Seu, K.S. Hahm, E.R. Woo, Biotechnol. Lett. 26, 1125–1130 (2004)<br />
|
[25] |
R.R. King, L.A. Calhoun, Phytochemistry 66, 2468–2473 (2005)<br />
|
[26] |
X.L. Yan, J.J. Tang, C.S. Passos, A. Nurisso, C.A. Simoes-Pires, M. Ji, H.X. Lou, P.H. Fan, J. Agric. Food Chem. 63, 10611–10619 (2015)<br />
|
[27] |
L.P. Santos, M.A.D. Boaventura, D.O. Alaide, Braga, J.M. Cassady. Planta Med. 62, 76 (1996)<br />
|
[28] |
J. Sun, Y.F. Gu, X.Q. Su, M.M. Li, H.X. Huo, J. Zhang, K.W. Zeng, Q. Zhang, Y.F. Zhao, J. Li, P.F. Tu, Fitoterapia 98, 110–116 (2014)<br />
|
[29] |
M.S.M. Yuen, F. Xue, T.C.W. Mak, H.N.C. Wong, Tetrahedron 54, 12429–12444 (1998)<br />
|
[30] |
M. Yoshikawa, T. Morikawa, F.M. Xu, S. Ando, H. Matsuda, Heterocycles 60, 1787–1792 (2003)<br />
|
[31] |
L. Xiong, C.G. Zhu, Y.R. Li, Y. Tian, S. Lin, S.P. Yuan, J.F. Hu, Q. Hou, N.H. Chen, Y.C. Yang, J.G. Shi, J. Nat. Prod. 74, 1188–1200 (2011)<br />
|
[32] |
Y.N. Yang, H. Zhu, Z. Chen, F. Liu, Y.W. An, Z.M. Feng, J.S. Jiang, P.C. Zhang, J. Nat. Prod. 78, 705–711 (2014)<br />
|
[33] |
P.G.M. Wuts, S.S. Bigelow, J. Org. Chem. 47, 2498–2500 (1982)<br />
|
[34] |
T. Oshihara, K. Yamaguchi, S. Sakamura, Agric. Biol. Chem. 47, 217–220 (1983)<br />
|
[35] |
R. Waibel, G. Benirschke, M. Benirschke, H. Achenbach, Phytochemistry 62, 805–811 (2003)<br />
|
|
<div>
|
|
<br />
|
|
</div>
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|