Regular Article |
|
|
|
|
|
Identification of enzymes responsible for the reduction of geraniol to citronellol |
Tian-Tian YUANa,b, Qian-Qian CHENa, Pei-Ji ZHAOa, Ying ZENGa, Xiao-Zhu LIUb, Shan LUc |
a State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; b Life Science College, Southwest Forestry University, Kunming 650224, China; c State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, China |
|
|
Abstract The reduction of geraniol to citronellol is the first step for the synthesis of natural phytol in the production of tocopherols and natural vitamin K. Baker's yeast was used in the bioreduction described above as a whole-cell biocatalyst. However, the enzyme responsible for the reduction of geraniol to citronellol is not yet known. Four old yellow enzyme(OYE) genes were cloned from yeast and plants, and expressed in Escherichia coli for a high level of recombinant proteins. The recombinant protein displayed a catalytic activity of converting geraniol to citronellol as a sole product verified by GC-MS analyses. The recombinant OYE2 intact cells were found to show 3. 7 and 1. 9-fold higher activity than that of yeast cells and the recombinant crude extracts, respectively. Compared to the recombinant fusion enzyme, the entrokinase-cleaved enzyme displayed nearly identical activity for geraniol reduction. To our knowledge, this is the first enzyme identified to catalyze the formation of citronellol from geraniol by reducing the allylic alcohol double bond, which is normally known as inactivating group for the old yellow enzymes.
|
Keywords
allylic alcohol
citronellol
geraniol
old yellow enzyme
reduction
|
Fund:This work was supported by grants from the Ministry of Science and Technology of China(2007CB108802) and State Key Laboratory of Phytochemistry and Plant Resources in West China(P2008-ZZ16, P2009-ZZ02). |
Issue Date: 11 February 2018
|
|
|
[1] |
Gramatica, P.; Manitto, P.; Ranzi, B. M.; Delbianco, A.; Francavilla, M. Experientia 1982, 38, 775-776.
|
[2] |
Gramatica, P.; Manitto, P.; Monti, D.; Speranza, G. Tetrahedron 1987, 43, 4481-4486.
|
[3] |
Toogood, H. S.; Gardiner, J. M.; Scrutton, N. S. ChemCatChem 2010, 2, 892-914.
|
[4] |
Stuermer, R.; Hauer, B.; Hall, M.; Faber, K. Curr. Opin. Chem. Biol. 2007, 11, 203-213.
|
[5] |
Swiderska, M. A.; Stewart, J. D. J. Mol. Catal. B Enzym. 2006, 42, 52-54.
|
[6] |
Hall, M.; Stueckler, C.; Hauer, B.; Stuermer, R.; Friedrich, T.; Breuer, M.; Kroutil, W.; Faber, K. Eur. J. Org. Chem. 2008, 9, 1511-1516.
|
[7] |
Brenna, E.; Fronza, G.; Fuganti, C.; Monti, D.; Parmeggiani, F. J. Mol. Catal. B Enzym. 2011, 73, 17-21.
|
[8] |
Wada, M.; Yoshizumi, A.; Noda, Y.; Kataoka, M.; Shimizu, S.; Takagi, H.; Nakamori, S. Appl. Environ. Microbiol. 2003, 69, 933-937.
|
[9] |
Kataoka, M.; Kotaka, A.; Thiwthong, R.; Wada, M.; Nakamori, S.; Shimizu, S. J. Biotechnol. 2004, 114, 1-9.
|
[10] |
Hall, M.; Stueckler, C.; Ehammer, H.; Pointner, E.; Oberdorfer, G.; Gruber, K.; Hauer, B.; Stuermer, R.; Kroutil, W.; Macheroux, P.; Faber, K. Adv. Synth. Catal. 2008, 350, 411-418.
|
[11] |
Hall, M.; Stueckler, C.; Kroutil, W.; Macheroux, P.; Faber, K. Angew. Chem. Int. Ed. 2007, 46, 3934-3937.
|
[12] |
Schaller, F.; Biesgen, C.; Müssig, C.; Altmann, T.; Weiler, E. W. Planta 2000, 210, 979-984.
|
[13] |
Schlieben, N. H.; Niefind, K.; Müller, J.; Riebel, B.; Hummel, W.; Schomburg, D. J. Mol. Biol. 2005, 349, 801-813.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|