ORIGINAL ARTICLES |
|
|
|
|
|
Metabolite profiles of Paragliomastix luzulae (formerly named as Acremonium striatisporum) KMM 4401 and its co-cultures with Penicillium hispanicum KMM 4689 |
Sofya S. Starnovskaya, Liliana E. Nesterenko, Roman S. Popov, Natalya N. Kirichuk, Viktoria E. Chausova, Ekaterina A. Chingizova, Artur R. Chingizov, Marina P. Isaeva, Ekaterina A. Yurchenko, Anton N. Yurchenko |
G. B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-Letiya Vladivostoka, Vladivostok, 690022, Russian Federation |
|
|
Abstract The marine holothurian-derived fungal strain KMM 4401 has been identified as Paragliomastix luzulae using 28S rDNA, ITS regions and the partial TEF1 gene sequences. The metabolite profile of the fungal culture was studied by UPLC-MS technique. The strain KMM 4401 is a source of various virescenoside-type isopimarane glycosides suggested as chemotaxonomic feature for this fungal species. Also Px. luzulae KMM 4401 was proposed as possible source of new bioactive secondary metabolites especially antimicrobials. Moreover, the co-cultures of Px. luzulae KMM 4401 with another marine fungus Penicillium hispanicum KMM 4689 inoculated simultaneously or after two weeks were investigated by same way. It was shown, that P. hispanicum KMM 4689 suppressed the production of most of Px. luzulae KMM 4401 metabolites. On the other hand, the co-cultivation of P. hispanicum KMM 4689 and Px. luzulae KMM 4401 resulted in increasing of production of main deoxyisoaustamide alkaloids of P. hispanicum KMM 4689 on 50-190%.
|
Keywords
Paragliomastix luzulae
28S rDNA
ITS
TEF1
Phylogeny
Identification
Penicillium hispanicum
Co-cultivation
|
Fund:This research was funded by a grant from the Ministry of Science and Higher Education of the Russian Federation, 15.BRK.21.0004 (Contract No. 075-15-2021-1052). |
Corresponding Authors:
Anton N. Yurchenko,E-mail:yurchenkoan@piboc.dvo.ru
E-mail: yurchenkoan@piboc.dvo.ru
|
Issue Date: 14 October 2024
|
|
|
[1] Pivkin MV. Filamentous fungi associated with holothurians from the sea of Japan, off the primorye coast of Russia. Biol Bull. 2000;198:101-9. [2] Marcotullio MC, Rosati O, Curini M. Virescenols: sources, structures and chemistry. Nat Prod Commun. 2008;3:1934578X0800300627. [3] Afiyatullov SS, Kalinovsky AI, Antonov AS. New virescenosides from the marine-derived fungus Acremonium striatisporum. Nat Prod Commun. 2011;6:1934578X1100600803. [4] Afiyatullov SS, Kalinovsky AI, Antonov AS, Zhuravleva OI, Khudyakova YV, Aminin DL, et al. Isolation and structures of virescenosides from the marine-derived fungus Acremonium striatisporum. Phytochem Lett. 2016;15:66-71. [5] Zhuravleva OI, Antonov AS, Oleinikova GK, Khudyakova YV, Popov RS, Denisenko VA, et al. Virescenosides from the holothurian-associated fungus Acremonium striatisporum KMM 4401. Mar Drugs. 2019. https://doi.org/10.3390/md17110616. [6] Cagnoli-Bellavita N, Ceccherelli P, Ribaldi M, Polonsky J, Baskevitch-Varon Z, Varenne J. Structures of virescenosides D and H, new metabolites of Acremonium luzulae (Fuckel) Gams. J Chem Soc Perkin Trans 1. 1977. https://doi.org/10.1039/p19770000351. [7] Hussain H, Mamadalieva NZ, Ali I, Elizbit, Green IR, Wang D, et al. Fungal glycosides: structure and biological function. Trends Food Sci Technol. 2021;110:611-51. [8] Moussaïf M, Jacques P, Schaarwächter P, Budzikiewicz H, Thonart P. Cyclosporin C is the main antifungal compound produced by Acremonium luzulae. Appl Environ Microbiol. 1997;63:1739-43. [9] Wang X, Lin M, Xu D, Lai D, Zhou L. Structural diversity and biological activities of fungal cyclic peptides, excluding cyclodipeptides. Molecules. 2017. https://doi.org/10.3390/molecules22122069. [10] Corbett KM, Ford L, Warren DB, Pouton CW, Chalmers DK. Cyclosporin structure and permeability: from A to Z and beyond. J Med Chem. 2021;64:13131-51. [11] Falah F, Vasiee A, Ramezani M, Tabatabaee-Yazdi F, Mortazavi SA, Danesh A. Effect of immobilization, mutation, and microbial stresses on increasing production efficiency of “Cyclosporin A.” Biomass Convers Biorefin. 2022. https://doi.org/10.1007/s13399-022-02533-x. [12] Fuhrman JA. Microbial community structure and its functional implications. Nature. 2009;459:193-9. [13] Hu HL, van den Brink J, Gruben BS, Wösten HAB, Gu JD. de Vries RP Improved enzyme production by co-cultivation of Aspergillus niger and Aspergillus oryzae and with other fungi. Int Biodeterior Biodegrad. 2011;65:248-52. [14] Oppong-Danquah E, Budnicka P, Blümel M, Tasdemir D. Design of fungal co-cultivation based on comparative metabolomics and bioactivity for discovery of marine fungal agrochemicals. Mar Drugs. 2020. https://doi.org/10.3390/md18020073. [15] Hou L, Giraldo A, Groenewald J, Rämä T, Summerbell R, Huang G, et al. Redisposition of acremonium-like fungi in Hypocreales. Stud Mycol. 2023. https://doi.org/10.3114/sim.2023.105.02_supp. [16] Zhuravleva OI, Antonov AS, Trang VTD, Pivkin MV, Khudyakova YV, Denisenko VA, et al. New deoxyisoaustamide derivatives from the coral-derived fungus Penicillium dimorphosporum KMM 4689. Mar Drugs. 2021;19:553. [17] Dyshlovoy SA, Zhuravleva OI, Hauschild J, Busenbender T, Pelageev DN, Yurchenko AN, et al. New marine fungal deoxy-14,15-dehydroisoaustamide resensitizes prostate cancer cells to enzalutamide. Mar Drugs. 2023. https://doi.org/10.3390/md21010054. [18] Nesterenko LE, Popov RS, Zhuravleva OI, Kirichuk NN, Chausova VE, Krasnov KS, et al. A study of the metabolic profiles of Penicillium dimorphosporum KMM 4689 which led to its re-identification as Penicillium hispanicum. Fermentation. 2023. https://doi.org/10.3390/fermentation9040337. [19] Afiyatullov SS, Kalinovsky AI, Kuznetsova TA, Pivkin MV, Prokofeva NG, Dmitrenok PS, et al. New glycosides of the fungus Acremonium striatisporum isolated from a sea cucumber. J Nat Prod. 2004;67:1047-51. [20] Afiyatullov SS, Kuznetsova TA, Isakov VV, Pivkin MV, Prokofeva NG, Elyakov GB. New diterpenic altrosides of the fungus Acremonium striatisporum isolated from a sea cucumber. J Nat Prod. 2000;63:848-50. [21] Afiyatullov SS, Kalinovsky AI, Pivkin MV, Dmitrenok PS, Kuznetsova TA. New diterpene glycosides of the fungus Acremonium striatisporum isolated from a sea cucumber. Nat Prod Res. 2006;20:902-8. [22] Afiyatullov SS, Kalinovsky AI, Kuznetsova TA, Isakov VV, Pivkin MV, Dmitrenok PS, et al. New diterpene glycosides of the fungus Acremonium striatisporum isolated from a Sea Cucumber. J Nat Prod. 2002;65:641-4. [23] Cagnoli-Bellavita N, Cecherelli P, Ribaldi M, Polonsky J, Baskevitch Z. Virescenoside A and virescenoside B, new altroside metabolites of Oospora virescens. Gazz Chim Ital. 1969;99:1354-63. [24] Cagnoli-Bellavita N, Ceccherelli P, Mariani R, Polonsky J, Baskevitch Z. Structure du virescenoside C, nouveau métabolite de Oospora virescens (Link) Wallr. Eur J Biochem. 1970;15:356-9. [25] Wieland P, Prelog V. Über die Isolierung von Ergosterin, Ergosterin-palmitat und Ergosterin-peroxyd aus dem Mycel von Aspergillus fumigatus, mut. Helvola, Yuill. Helv Chim Acta. 1947;30:1028-30. [26] Yang Z, Pattamana K, Molino BF, Haydar SN, Cao Y, Bois F, et al. Novel oxidation of cyclosporin a: preparation of cyclosporin methyl vinyl ketone (Cs-MVK). Synlett. 2009;2009:2935-8. [27] Or YS, Lazarova T, Chen JS-H. Cyclosporins for the treatment of immune disorders. 2006. [28] Huang Z, Long Z, Su Z, Yang S. Novel cyclosporin derivatives for the treatment and prevention of a viral infection. 07.06.2012, 2017. [29] MB#323050. https://www.mycobank.org/page/Name%20details%20page/field/Mycobank%20%23/323050. Accessed 06 Mar 2024. [30] Hussain H, Mamadalieva NZ, Ali I, Green IR, Wang D, Zou L, et al. Fungal glycosides: structure and biological function. Trends Food Sci Technol. 2021;110:611-51. [31] Yurchenko AN, Nesterenko LE, Popov RS, Kirichuk NN, Chausova VE, Chingizova EA, et al. The metabolite profiling of Aspergillus fumigatus KMM4631 and its co-cultures with other marine fungi. Metabolites. 2023. https://doi.org/10.3390/metabo13111138. [32] Zhuravleva OI, Antonov AS, Trang VTD, Pivkin MV, Khudyakova YV, Denisenko VA, et al. New deoxyisoaustamide derivatives from the coral-derived fungus Penicillium dimorphosporum KMM 4689. Mar Drugs. 2021. https://doi.org/10.3390/md19010032. [33] Dyshlovoy SA, Zhuravleva OI, Hauschild J, Busenbender T, Pelageev DN, Yurchenko AN, et al. New marine fungal deoxy-14, 15-dehydroisoaustamide resensitizes prostate cancer cells to enzalutamide. Mar Drugs. 2023. https://doi.org/10.3390/md21010054. [34] Vilgalys R, Hester M. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol. 1990;172:4238-46. [35] Scholin CA, Herzog M, Sogin M, Anderson DM. Identification of group- and strain-specific genetic markers for globally distributed Alexandrium (Dinophyceae). II. Sequence analysis of a fragment of the LSU rRNA gene. J Phycol. 1994;30:999-1011. [36] Fehling J, Green DH, Davidson K, Bolch CJ, Bates SS. Domoic acid production by Pseudo-nitzschia seriata (Bacillariophyceae) in Scottish waters. J Phycol. 2004;40:622-30. [37] Carbone I, Kohn LM. A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia. 1999;91:553-6. [38] Belousova EB, Zhuravleva OI, Yurchenko EA, Oleynikova GK, Antonov AS, Kirichuk NN, et al. New anti-hypoxic metabolites from co-culture of marine-derived fungi Aspergillus carneus KMM 4638 and Amphichorda sp. KMM 4639. Biomolecules. 2023. https://doi.org/10.3390/biom13050741. [39] Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35:1547. [40] Tamura K. Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G+ C-content biases. Mol Biol Evol. 1992;9:678-87. [41] Chambers MC, MacLean B, Burke R, Amodei D, Ruderman DL, Neumann S, et al. A cross-platform toolkit for mass spectrometry and proteomics. Nat Biotechnol. 2012;30:918-20. [42] Pluskal T, Castillo S, Villar-Briones A, Orešič M. MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinform. 2010. https://doi.org/10.1186/1471-2105-11-395. [43] Ruttkies C, Schymanski EL, Wolf S, Hollender J, Newmann S. MetFrag relaunched: incorporating strategies beyond in silico fragmentation. J Cheminform. 2016;8:3. [44] Campbell J. High-throughput assessment of bacterial growth inhibition by optical density measurements. Curr Protoc Chem Biol. 2010;2:195-208. |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|