Natural Products and Bioprospecting    2024, Vol. 14 Issue (3) : 13-13     DOI: 10.1007/s13659-024-00435-1
REVIEWS |
Natural and engineered xylosyl products from microbial source
Jianzhao Qi1,2,3, Shi-jie Kang1, Ling Zhao2, Jin-ming Gao1, Chengwei Liu1,3
1 Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China;
2 Department of Pharmacy, School of Medicine, Xi'an International University, Xi'an 710077, China;
3 Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, Harbin 150040, China
Download: PDF(4041 KB)   HTML ()  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  Glycosylation is a prevalent post-modification found in natural products and has a significant impact on the structural diversity and activity variation of natural products. Glucosylation is the most common type of glycosylation, whereas xylosylation is relatively rare. Despite their unique chemical structures and beneficial activities, xylosylated natural products from microorganisms have received little attention. This review provides, for the first time, a comprehensive summary of 126 microbial-derived xylosylated natural products, including xylosyl-cyathane diterpenes, xylosylated triterpenes, xylosyl aromatic compounds, and others. Among these compounds, xylosyl-cyathane diterpenes represent the highest number of derivatives, followed by xylosylated triterpenes. Xylosyl compounds from bacterial sources have less defined structural profiles compared to those from fungi. The characterization of xylosyltransferase EriJ from Basidiomycota extended the structural diversity of xylosyl cyathane diterpenes. This work provides a valuable reference for the research and use of xylosyltransferase for drug discovery and synthetic chemistry. Further work is needed to explore the potential applications of microbial derived xylosyl compounds and to develop novel xylosyl transferases. With the deepening of genomic sequencing of medicinal fungi, more biosynthesis of bioactive xylosyl compounds is expected to be elucidated in the future.
Keywords Xylosyl product      Cyathane diterpene      Engineering transformation      Xylosyltransferase     
Fund:This work was supported by the Key R&D Projects in Shaanxi Province of China (No. 2023-YBSF-164), the National Natural Science Foundation of China (No. 31800031 and No. 32370069), the Fundamental Research Funds for the Central Universities (2572023AW40), and the Natural Science Foundation of Heilongjiang Province of China (No. LH2023C035).
Corresponding Authors: Jianzhao Qi,E-mail:qjz@nwafu.edu.cn;Chengwei Liu,E-mail:liuchw@nefu.edu.cn     E-mail: qjz@nwafu.edu.cn;liuchw@nefu.edu.cn
Issue Date: 14 June 2024
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jianzhao Qi
Shi-jie Kang
Ling Zhao
Jin-ming Gao
Chengwei Liu
Trendmd:   
Cite this article:   
Jianzhao Qi,Shi-jie Kang,Ling Zhao, et al. Natural and engineered xylosyl products from microbial source[J]. Natural Products and Bioprospecting, 2024, 14(3): 13-13.
URL:  
http://npb.kib.ac.cn/EN/10.1007/s13659-024-00435-1     OR     http://npb.kib.ac.cn/EN/Y2024/V14/I3/13
1. Wang X-J, Xie Q, Liu Y, Jiang S, Li W, Li B, et al. Panax japonicus and chikusetsusaponins: a review of diverse biological activities and pharmacology mechanism. Chin Herb Med. 2021;13(1):64–77.
2. Huang G, Lv M, Hu J, Huang K, Xu H. Glycosylation and activities of natural products. Mini Rev Med Chem. 2016;16:1013–6.
3. Grabowski K, Baringhaus K-H, Schneider G. Scaffold diversity of natural products: inspiration for combinatorial library design. Nat Prod Rep. 2008;25(5):892–904.
4. Newman DJ, Cragg GM. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod. 2020;83(3):770–803.
5. He B, Bai X, Tan Y, Xie W, Feng Y, Yang G-Y. Glycosyltransferases: mining, engineering and applications in biosynthesis of glycosylated plant natural products. Synth Syst Biotechnol. 2022;7(1):602–20.
6. Elshahawi SI, Shaaban KA, Kharel MK, Thorson JS. A comprehensive review of glycosylated bacterial natural products. Chem Soc Rev. 2015;44(21):7591–697.
7. Li K, Cai J, Su Z, Yang B, Liu Y, Zhou X, et al. Glycosylated natural products from marinemicrobes. Front Chem. 2020;7:786.
8. Mamedova RP, Isaev MI. Triterpenoids from Astragalus plants. Chem Nat Compd. 2004;40(4):303–57.
9. Ramadhan R, Worawalai W, Phuwapraisirisan P. New onoceranoid xyloside from Lansium parasiticum. Nat Prod Res. 2019;33(20):2917–24.
10. Samy MN, Sugimoto S, Matsunami K, Otsuka H, Kamel MS. One new flavonoid xyloside and one new natural triterpene rhamnoside from the leaves of Syzygium grande. Phytochem Lett. 2014;10:86–90.
11. Yoshikawa K, Inoue M, Matsumoto Y, Sakakibara C, Miyataka H, Matsumoto H, Arihara S. Lanostane triterpenoids and triterpene glycosides from the fruit body of Fomitopsis pinicola and their inhibitory activity against COX-1 and COX-2. J Nat Prod. 2005;68(1):69–73.
12. Qi J, Gao Y-Q, Kang S-J, Liu C, Gao J-M. Secondary metabolites of bird’s nest fungi: chemical structures and biological activities. J Agric Food Chem. 2023;71(17):6513–24.
13. Dion HW, Woo PW, Willmer NE, Kern DL, Onaga J, Fusari SA. Butirosin, a new aminoglycosidic antibiotic complex: isolation and characterization. Antimicrob Agents Chemother. 1972;2(2):84–8.
14. Fujimoto H, Suzuki K, Hagiwara H, Yamazaki M. New toxic metabolites from a mushroom, Hebeloma vinosophyllum. I: structures of hebevinosides I, II, III, IV, and V. Chem Pharm Bull. 1986;34(1):88–99.
15. Fujimoto H, Hagiwara H, Suzuki K, Yamazaki M. New toxic metabolites from a mushroom, Hebeloma vinosophyllum. II. Isolation and structures of hebevinosides VI, VII, VIII, IX, X, and XI. Chem Pharm Bull. 1987;35(6):2254–60.
16. Fujimoto H, Maeda K, Yamazaki M. New toxic metabolites from a mushroom, Hebeloma vinosophyllum. III. Isolation and structures of three new glycosides, hebevinosides XII, XIII and XIV, and productivity of the hebevinosides at three growth stages of the mushroom. Chem Pharm Bull. 1991;39(8):1958–61.
17. Su H-J, Fann Y-F, Chung M-I, Won S-J, Lin C-N. New lanostanoids of Ganoderma tsugae. J Nat Prod. 2000;63(4):514–6.
18. Yoshikawa K, Matsumoto K, Mine C, Bando S, Arihara S. Five lanostane triterpenoids and three saponins from the fruit body of Laetiporus versisporus. Chem Pharm Bull. 2000;48(10):1418–21.
19. Peng X-R, Su H-G, Liu J-H, Huang Y-J, Yang X-Z, Li Z-R, et al. C30 and C31 triterpenoids and triterpene sugar esters with cytotoxic activities from edible mushroom Fomitopsis pinicola (sw. Ex Fr.) Krast. J Agric Food Chem. 2019;67(37):10330–41.
20. Li X, Wang Y, Fan Z, Wang Y, Wang P, Yan X, Zhou Z. High-level sustainable production of the characteristic protopanaxatriol-type saponins from Panax species in engineered Saccharomyces cerevisiae. Metab Eng. 2021;66:87–97.
21. Friedman M. Chemistry, nutrition, and health-promoting properties of Hericium erinaceus (Lion’s mane) mushroom fruiting bodies and mycelia and their bioactive compounds. J Agric Food Chem. 2015;63(32):7108–23.
22. Thongbai B, Rapior S, Hyde KD, Wittstein K, Stadler M. Hericium erinaceus, an amazing medicinal mushroom. Mycol Prog. 2015;14(10):1–23.
23. Wei J, Cheng M, Zhu J-F, Zhang Y, Cui K, Wang X, Qi J. Comparative genomic analysis and metabolic potential profiling of a novel culinarymedicinal mushroom, Hericium rajendrae (Basidiomycota). J Fungi. 2023;9(10):1018.
24. Christian MMC, Kathrin R, Ali W, C AM, Marc MJ. Laxitextines A and B, cyathane xylosides from the tropical fungus Laxitextum incrustatum. J Nat Prod. 2016;79(4):894–8.
25. Chemutai SW, Nico M, Hedda S, Kathrin W, Harald K, Marc S, Clement MJ. Antimicrobial and cytotoxic cyathane-xylosides from cultures of the basidiomycete Dentipellis fragilis. Antibiotics. 2022;11(8):1072.
26. Anke T, Oberwinkler F. The striatins—new antibiotics from the basidiomycete Cyathus striatus (Huds. ex Pers.). Willd J Antibiot. 1977;30(3):221–5.
27. Hecht H-J, Höfle G, Steglich W, Anke T, Oberwinkler F. Striatin A, B, and C: novel diterpenoid antibiotics from Cyathus striatus; X-ray crystal structure of striatin A. J Chem Soc Chem Commun. 1978. https://doi.org/10.1039/C39780000665.
28. Anke T, Rabe U, Schu P, Eizenhöfer T, Schrage M, Steglich W. Studies on the biosynthesis of striatal-type diterpenoids and the biological activity of herical. Z naturforsch C J Biosci. 2002;57(3–4):263–71.
29. Shen T, Hof LM, Hausmann H, Stadler M, Zorn H. Development of an enzyme linked immunosorbent assay for detection of cyathane diterpenoids. BMC Biotechnol. 2014;14:98.
30. Bai R, Zhang CC, Yin X, Wei J, Gao JM, Striatoids A-F. Cyathane diterpenoids with neurotrophic activity from cultures of the fungus Cyathus striatus. J Nat Prod. 2015;78(4):783–8.
31. Nitthithanasilp S, Intaraudom C, Boonyuen N, Suvannakad R, Pittayakhajonwut P. Antimicrobial activity of cyathane derivatives from Cyathus subglobisporus BCC44381. Tetrahedron. 2018;74(48):6907–16.
32. Wei J, Ye M-Y, Wang Z-X, Zhang Y-L, Hu X-S, Hui H-P, et al. Molecular properties, structure, neurotrophic and anti-inflammatory activities of cultured secondary metabolites from the cultures of the mushroom Cyathus striatus CBPFE A06. Nat Prod Res. 2023. https://doi.org/10.1080/14786419.2023.2273911.
33. Kawagishi H, Shimada A, Shirai R, Okamoto K, Ojima F, Sakamoto H, et al. Erinacines A, B and C, strong stimulators of nerve growth factor (NGF)-synthesis, from the mycelia of Hericium erinaceum. Tetrahedron Lett. 1994;35(10):1569–72.
34. Kawagishi H, Simada A, Shizuki K, Mori H, Okamoto K, Sakamoto H, Furukawa S. Erinacine D, a stimulator of NGF-synthesis, from the mycelia of Hericium erinaceum. Heterocycl Commun. 1996;2(1):51–4.
35. Kawagishi H, Shimada A, Hosokawa S, Mori H, Sakamoto H, Ishiguro Y, et al. Erinacines E, F, and G, stimulators of nerve growth factor (NGF)-synthesis, from the mycelia of Hericium erinaceum. Tetrahedron Lett. 1996;37(41):7399–402.
36. Lee EW, Shizuki K, Hosokawa S, Suzuki M, Suganuma H, Inakuma T, et al. Two novel diterpenoids, erinacines H and I from the mycelia of Hericium erinaceum. Biosci Biotechnol Biochem. 2000;64(11):2402–5.
37. Nakamura TT. Erinacines J and K from the mycelia of Hericium erinaceum. Tetrahedron. 2006;62(36):8463–6.
38. Atsushi S, Hirokazu K, Shoei F, Yoshinobu M, Fumihiro K. Cyathane derivative and inducer for nerve growth factor production containing the same as active ingredient. Japan; 1996.
39. Saito T, Aoki F, Hirai H, Inagaki T, Matsunaga Y, Sakakibara T, et al. Erinacine E as a kappa opioid receptor agonist and its new analogs from a basidiomycete, Hericium ramosum. J Antibiot. 1998;51(11):983–90.
40. Kenmoku H, Sassa T, Kato N. Isolation of erinacine P, a new parental metabolite of cyathane-xylosides, from Hericium erinaceum and its biomimetic conversion into erinacines A and B. ChemInform. 2000;31(22):4389–93.
41. Kenmoku H, Shimai T, Toyomasu T, Kato N, Sassa T, Erinacine Q. A new erinacine from Hericium erinaceum, and its biosynthetic route to erinacine C in the basidiomycete. Biosci Biotechnol Biochem. 2002;66(3):571–5.
42. Bing-Ji, Ma Y, Lian-Zhen Z, Li, et al. A new cyathane-xyloside from the mycelia of Hericium erinaceum. Z für Naturforschung B. 2008;63(10):1241–2.
43. Zhang Z, Liu R-N, Tang Q-J, Zhang J-S, Yang Y, Shang X-D. A new diterpene from the fungal mycelia of Hericium erinaceus. Phytochem Lett. 2015;11:151–6.
44. Chen C-C, Tzeng T-T, Chen C-C, Ni C-L, Lee L-Y, Chen W-P, et al. Erinacine S, a rare sesterterpene from the mycelia of Hericium erinaceus. J Nat Prod. 2016;79(2):438–41.
45. Zhang Y, Liu L, Bao L, Yang Y, Ma K, Liu H. Three new cyathane diterpenes with neurotrophic activity from the liquid cultures of Hericium erinaceus. J Antibiot. 2018;71(9):818–21.
46. Rupcic Z, Rascher M, Kanaki S, Köster RW, Stadler M, Wittstein K. Two new cyathane diterpenoids from mycelial cultures of the medicinal mushroom Hericium erinaceus and the rare species, Hericium flagellum. Int J Mol Sci. 2018;19(3):740.
47. Chen L, Yao J-N, Chen H-P, Zhao Z-Z, Li Z-H, Feng T, Liu J-K. Hericinoids A–C, cyathane diterpenoids from culture of mushroom Hericium erinaceus. Phytochem Lett. 2018;27:94–100.
48. Wei J, Li J-Y, Feng X-L, Zhang Y, Hu X, Hui H, et al. Unprecedented neoverrucosane and cyathane diterpenoids with anti-neuroinflammatory activity from cultures of the culinary-medicinal mushroom Hericium erinaceus. Molecules. 2023;28(17):6380.
49. Ha LS, Ki D-W, Kim J-Y, Choi D-C, Lee I-K, Yun B-S. Dentipellin, a new antibiotic from culture broth of Dentipellis fragilis. J Antibiot. 2021;74(8):538–41.
50. Liu C, Minami A, Ozaki T, Wu J, Kawagishi H, Maruyama J-I, Oikawa H. Efficient reconstitution of basidiomycota diterpene erinacine gene cluster in ascomycota host Aspergillus oryzae based on genomic DNA sequences. J Am Chem Soc. 2019;141(39):15519–23.
51. Liu H, Ma K, Bao L. Cyathane diterpenoids and their application. CN; 2019.
52. Ma K, Zhang Y, Guo C, Yang Y, Han J, Yu B, et al. Reconstitution of biosynthetic pathway for mushroom-derived cyathane diterpenes in yeast and generation of new non-natural analogues. Acta Pharm Sin B. 2021;11(09):2945–56.
53. Takeuchi T, Hara T, Naganawa H, Okada M, Hamada M, Umezawa H, et al. New antifungal antibiotics, benanomicins A and B from an actinomycete. J Antibiot. 1988;41(6):807–11.
54. Hoshino H, Seki J, Takeuchi T. New antifungal antibiotics, benanomicins A and B inhibit infection of T-cell with human immunodeficiency virus (HIV) and syncytium formation by HIV. J Antibiot. 1989;42(2):344–6.
55. Kondo S, Gomi S, Uotani K, Inouye S, Takeuchi T. Isolation of new minor benanomicins. J Antibiot. 1991;44(2):123–9.
56. Oki T, Saitoh K, Tomatsu K, Tomita K, Konishi M, Kawaguchi H. Novel antifungal antibiotic BMY-28567. Ann N Y Acad Sci. 1988;544(1):184–7.
57. Tsunakawa M, Nishio M, Ohkuma H, Tsuno T, Konishi M, Naito T, et al. The structure of pradimicins a, B and C: a novel family of antifungal antibiotics. J Org Chem. 1989;54(11):2532–6.
58. Oki T, Tenmyo O, Hirano M, Tomatsu K, Kamei H, Pradimicins A. B and C: new antifungal antibiotics. II. In vitro and in vivo biological activities. J Antibiot. 1990;43(7):763–70.
59. Tanabe A, Nakashima H, Yoshida O, Yamamoto N, Tenmyo O, Oki T. Inhibitory effect of new antibiotic, pradimincin A on infectivity, cytopathic effect and replication of human immunodeficiency virus in vitro. J Antibiot. 1988;41(1111):1708–10.
60. Sawada Y, Nishio M, Yamamoto H, Hatori M, Miyaki T, Konishi M, Oki T. New antifungal antibiotics, pradimicins D and E. Glycine analogs of pradimicins a and C. J Antibiot. 1990;43(7):771–7.
61. Sawada Y, Hatori M, Yamamoto H, Nishio M, Miyaki T, Oki T. New antifungal antibiotics pradimicins FA-1 and FA-2: d-serine analogs of pradimicins a and C. J Antibiot. 1990;43(10):1223–9.
62. Hasegawa T, Kakushima M, Hatori M, Aburaki S, Kakinuma S, Furumai T, Oki T. Pradimicins T1 and T2, new antifungal antibiotics produced by an actinomycete. II. Structures and biosynthesis. J Antibiot. 1993;46(4):598–605.
63. Furumai T, Hasegawa T, Kakushima M, Suzuki K, Yamamoto H, Yamamoto S, et al. Pradimicins T1 and T2, new antifungal antibiotics produced by an actinomycete. I. Taxonomy, production, isolation, physico-chemical and biological properties. J Antibiot. 1993;46(4):589–97.
64. Furumai T, Yamamoto H, Narita Y, Hasegawa T, Aburaki S, Kakushima M, Oki T. Microbial modification of pradimicins at C-11 leading to 11-O-demethyl-and 11-O-l-xylosylpradimicins A and FA-1. J Antibiot. 1993;46(10):1589–97.
65. Kondo R, Yamagami H, Sakai K. Xylosylation of phenolic hydroxyl groups of the monomeric lignin model compounds 4-methylguaiacol and vanillyl alcohol by Coriolus versicolor. Appl Environ Microbiol. 1993;59(2):438–41.
66. Hundt K, Martin D, Hammer E, Jonas U, Kindermann MK, Schauer F. Transformation of triclosan by Trametes versicolor and Pycnoporus cinnabarinus. Appl Environ Microbiol. 2000;66(9):4157–60.
67. Yoshikawa K, Bando S, Arihara S, Matsumura E, Katayama S. A Benzofuran glycoside and an acetylenic acid from the fungus Laetiporus sulphureus var. Miniatus. Chem Pharm Bull. 2001;49(3):327–9.
68. Yao L, Zhu L-P, Xu X-Y, Tan L-L, Sadilek M, Fan H, et al. Discovery of novel xylosides in co-culture of basidiomycetes Trametes versicolor and Ganoderma applanatum by integrated metabolomics and bioinformatics. Sci Rep. 2016;6(1):33237.
69. Gu X-J, Ren K, Yao N, Yan S, Zhao J-F, Jiang X-Y, Lian Q. Chemical constituents from endophytic fungus Plectosphaerella cucumerina YCTA2Z1 of Cynanchum auriculatum. Chin Herb Med. 2018;10(1):95–8.
70. Li J, Kadota S, Kawata Y, Hattori M, Xu GJ, Namba T. Constituents of the roots of Cynanchum bungei Decne. Isolation and structures of four new glucosides, bungeiside-A, -B, -C, and -D. Chem Pharm Bull. 1992;40(12):3133–7.
71. Michel KH, Higgens CE. A-40104 antibiotics and process for production thereof. Google Patents, USA; 1978.
72. Lim Y, Suh JW, Kim S, Hyun B, Kim C, Lee CH. Cepacidine A, a novel antifungal antibiotic produced by Pseudomonas cepacia. II. Physico-chemical properties and structure elucidation. J Antibiot. 1994;47(12):1406–16.
73. Lee CH, Kim S, Hyun B, Suh JW, Yon C, Kim C, et al. Cepacidine A, a novel antifungal antibiotic produced by Pseudomonas cepacia. I. Taxonomy, production, isolation and biological activity. J Antibiot. 1994;47(12):1402–5.
74. Shin HJ, Matsuda H, Murakami M, Yamaguchi K. Aeruginosins 205A and -B, serine protease inhibitory glycopeptides from the Cyanobacterium oscillatoria agardhii (NIES-205). J Org Chem. 1997;62(6):1810–3.
75. Ishida K, Christiansen G, Yoshida WY, Kurmayer R, Welker M, Valls N, et al. Biosynthesis and structure of aeruginoside 126A and 126B, cyanobacterial peptide glycosides bearing a 2-carboxy-6-hydroxyoctahydroindole moiety. Chem Biol. 2007;14(5):565–76.
76. Lu S-E, Novak J, Austin FW, Gu G, Ellis D, Kirk M, et al. Occidiofungin, a unique antifungal glycopeptide produced by a strain of Burkholderia contaminans. Biochemistry. 2009;48(35):8312–21.
77. Tawfik KA, Jeffs P, Bray B, Dubay G, Falkinham JO III, Mesbah M, et al. Burkholdines 1097 and 1229, potent antifungal peptides from Burkholderia ambifaria 2.2 N. Org Lett. 2010;12(4):664–6.
78. Horii S, Nogami I, Mizokami N, Arai Y, Yoneda M. New antibiotic produced by bacteria, 5-beta-d-xylofuranosylneamine. Antimicrob Agents Chemother. 1974;5(6):578–81.
79. Bonjouklian R, Smitka TA, Doolin LE, Molloy RM, Debono M, Shaffer SA, et al. Tjipanazoles, new antifungal agents from the blue-green alga Tolypothrix tjipanasensis. Tetrahedron. 1991;47(37):7739–50.
80. Puder C, Loya S, Hizi A, Zeeck A. New co-metabolites of the streptazolin pathway. J Nat Prod. 2001;64(1):42–5.
81. Lauer U, Anke T, Sheldrick WS, Scherer A, Steglich W. Antibiotics from basidiomycetes. XXXI. Aleurodiscal: an antifungal sesterterpenoid from Aleurodiscus mirabilis (Berk. & Curt.) Höhn. J Antibiot. 1989;42(6):875–82.
82. Shindo K, Mikami K, Tamesada E, Takaichi S, Adachi K, Misawa N, Maoka T. Diapolycopenedioic acid xylosyl ester, a novel glyco-C30-carotenoic acid produced by a new marine bacterium Rubritalea squalenifaciens. Tetrahedron Lett. 2007;48(15):2725–7.
83. Galappaththi MCA, Patabendige NM, Premarathne BM, Hapuarachchi KK, Tibpromma S, Dai D-Q, et al. A review of Ganoderma triterpenoids and their bioactivities. Biomolecules. 2023;13(1):24.
84. Hopwood DA. Streptomyces in nature and medicine: the antibiotic makers. Oxford: Oxford Univ. Press; 2007.
85. Ardèvol A, Rovira C. Reaction mechanisms in carbohydrate-active enzymes: glycoside hydrolases and glycosyltransferases. Insights from ab initio quantum mechanics/molecular mechanics dynamic simulations. J Am Chem Soc. 2015;137(24):7528–47.
86. Vogt T, Jones P. Glycosyltransferases in plant natural product synthesis: characterization of a supergene family. Trends Plant Sci. 2000;5(9):380–6.
87. Zhang R-Q, Feng X-L, Wang Z-X, Xie T-C, Duan Y, Liu C, et al. Genomic and metabolomic analyses of the medicinal fungus Inonotus hispidus for its metabolite’s biosynthesis and medicinal application. J Fungi. 2022;8(12):1245.
88. Dong W-G, Wang Z-X, Feng X-L, Zhang R-Q, Shen D-Y, Du S, et al. Chromosome-level genome sequences, comparative genomic analyses, and secondary-metabolite biosynthesis evaluation of the medicinal edible mushroom Laetiporus sulphureus. Microbiol Spectr. 2022;10(5):e0243922.
89. Duan Y, Han H, Qi J, Gao J-M, Xu Z, Wang P, et al. Genome sequencing of Inonotus obliquus reveals insights into candidate genes involved in secondary metabolite biosynthesis. BMC Genom. 2022;23(1):314.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed