Natural Products and Bioprospecting    2022, Vol. 12 Issue (5) : 33-33     DOI: 10.1007/s13659-022-00357-w
REVIEW |
Beauty of the beast: anticholinergic tropane alkaloids in therapeutics
Kyu Hwan Shim1, Min Ju Kang2, Niti Sharma1, Seong Soo A.An1
1 Bionano Research Institute, Gachon University, 1342 Seongnam-daero, Sujeong-Gu, Seongnam 461-701, South Korea;
2 Department of Neurology, Veterans Health Service Medical Center, Veterans Medical Research Institute, Seoul, South Korea
Download: PDF(1610 KB)   HTML ()  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  Tropane alkaloids (TAs) are among the most valued chemical compounds known since pre-historic times. Poisonous plants from Solanaceae family (Hyoscyamus niger, Datura, Atropa belladonna, Scopolia lurida, Mandragora officinarum, Duboisia) and Erythroxylaceae (Erythroxylum coca) are rich sources of tropane alkaloids. These compounds possess the anticholinergic properties as they could block the neurotransmitter acetylcholine action in the central and peripheral nervous system by binding at either muscarinic and/or nicotinic receptors. Hence, they are of great clinical importance and are used as antiemetics, anesthetics, antispasmodics, bronchodilator and mydriatics. They also serve as the lead compounds to generate more effective drugs. Due to the important pharmacological action they are listed in the WHO list of essential medicines and are available in market with FDA approval. However, being anticholinergic in action, TA medication are under the suspicion of causing dementia and cognitive decline like other medications with anticholinergic action, interestingly which is incorrect. There are published reviews on chemistry, biosynthesis, pharmacology, safety concerns, biotechnological aspects of TAs but the detailed information on anticholinergic mechanism of action, clinical pharmacology, FDA approval and anticholinergic burden is lacking. Hence the present review tries to fill this lacuna by critically summarizing and discussing the above mentioned aspects.
Keywords Tropane alkaloids      Poisonous plants      Anticholinergic action      Muscarinic and nicotinic receptors      Therapeutics      Anticholinergic burden     
Fund:This research was funded by the National Research Foundation of Korea and by the Korean Government (2020R1A2B5B01002463 and 2021R1A6A1A03038996).
Corresponding Authors: Niti Sharma,E-mail:nitisharma@gachon.ac.kr;Seong Soo A.An,E-mail:seongaan@gachon.ac.kr     E-mail: nitisharma@gachon.ac.kr;seongaan@gachon.ac.kr
Issue Date: 12 October 2022
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Kyu Hwan Shim
Min Ju Kang
Niti Sharma
Seong Soo A.An
Trendmd:   
Cite this article:   
Kyu Hwan Shim,Min Ju Kang,Niti Sharma, et al. Beauty of the beast: anticholinergic tropane alkaloids in therapeutics[J]. Natural Products and Bioprospecting, 2022, 12(5): 33-33.
URL:  
http://npb.kib.ac.cn/EN/10.1007/s13659-022-00357-w     OR     http://npb.kib.ac.cn/EN/Y2022/V12/I5/33
1. Lounasmaa M, Tamminen T. The tropane alkaloids. Alkaloids. 1993;44:1–114.
2. Griffin WJ, Lin GD. Chemotaxonomy and geographical distribution of tropane alkaloids. Phytochemistry. 2000;53(6):623–37.
3. Kohnen-Johannsen KL, Kayser O. Tropane alkaloids: chemistry, pharmacology, biosynthesis and production. Molecules. 2019;24(4):796.
4. Zeng J, et al. Analyzing the contents of tropane alkaloids in Scopolia lurida, a resource plant species of Tibetan medicines. Sci Technol Tibet. 2016;279:60–2.
5. Diaz JL. Sacred plants and visionary consciousness. Phenomenol Cogn Sci. 2010;9(2):159–70.
6. Minn A. Anticholinergic plants. California poison control system. 2008; https:// calpo ison. org/ news/ antic holin ergic- plants.
7. Mills D, Jackson B. Scopolia lurida. 1972, Dunal.
8. WHO. List of essential medicines. 2019.
9. Cardillo AB, et al. Scopolamine, anisodamine and hyoscyamine production by Brugmansia candida hairy root cultures in bioreactors. Process Biochem. 2010;45(9):1577–81.
10. Palazón J, et al. Application of metabolic engineering to the production of scopolamine. Molecules. 2008;13(8):1722–42.
11. Wang X, et al. Enhancing the scopolamine production in transgenic plants of Atropa belladonna by overexpressing pmt and h6h genes. Physiol Plant. 2011;143(4):309–15.
12. Srinivasan P, Smolke CD. Biosynthesis of medicinal tropane alkaloids in yeast. Nature. 2020;585(7826):614–9.
13. Hocking GM. Henbane—healing herb of hercules and of apollo. Econ Bot. 1947;1(3):306–16.
14. Dioscorides P. De materia medica. Vol. 1. 1829: Knobloch.
15. Mayor A. Chemical and biological warfare in antiquity. In: Toxicology in Antiquity. Elsevier; 2019. p. 243–55.
16. Waniakowa J. “Mandragora"" and"" Belladonna"": the names of two magic plants. Studia Linguistica Universitatis Iagellonicae Cracoviensis, 2007. p. 124.
17. Forbes TR. Why is it called’beautiful lady’? A note on belladonna. Bull N Y Acad Med. 1977;53(4):403.
18. Carruthers DM. Lines of flight of the deadly nightshade: An enquiry into the properties of the magical plant, its literature and history. Mosaic. 2015;48(2):119–32.
19. Wexler P. History of Toxicology and Environmental Health: Toxicology in Antiquity II. New York: Academic Press; 2014.
20. Gunda B. Fish poisoning in the Carpathian area and in the Balkan Peninsula. California: University of California; 1967.
21. Naranjo P. Social function of coca in pre-Columbian America. J Ethnopharmacol. 1981;3(2–3):161–72.
22. Lakstygal AM, et al. Dark classics in chemical neuroscience: atropine, scopolamine, and other anticholinergic deliriant hallucinogens. ACS Chem Neurosci. 2018;10(5):2144–59.
23. Rätsch C. Rauch von Delphi: Eine ethnopharmakologische Annäherung. Curare. 1987;10(4):215–28.
24. Fatur K. “Hexing herbs” in ethnobotanical perspective: A historical review of the uses of anticholinergic Solanaceae plants in Europe. Econ Bot. 2020;74(2):140–58.
25. Mann J. Murder, magic, and medicine. Oxford: Oxford University Press; 2000.
26. Wiart C. Ethnopharmacology of medicinal plants: Asia and the Pacific. Berlin: Springer; 2007.
27. Müller J, Wanke K. Toxic psychoses from atropine and scopolamine. Fortschr Neurol Psychiatr. 1998;66(7):289–95.
28. Wink M. A short history of alkaloids. In: Alkaloids. Springer; 1998. p. 11–44.
29. Yang Y-C, Song Y-K, Kim T-Y. Comparative Study between Glycopyrrolate- Neostigmine and Atropine-Neostigmine in Postanesthetic Arousal. Korean J Anesthesiol. 1986;9:66–70.
30. Verma V. Classic studies on the interaction of cocaine and the dopamine transporter. Clin Psychopharmacol Neurosci. 2015;13(3):227.
31. Pergolizzi JV Jr, et al. Perspectives on transdermal scopolamine for the treatment of postoperative nausea and vomiting. J Clin Anesth. 2012;24(4):334–45.
32. Bradbury N. Taste of Poison, ed. I.K. paperwhite. 2022.
33. Grynkiewicz G, Gadzikowska M. Tropane alkaloids as medicinally useful natural products and their synthetic derivatives as new drugs. Pharmacol Rep. 2008;60(4):439.
34. Dureng G, et al. Comparative affinity of several standard anti-secretory agents for the intestinal cholinergic receptors of of rats and dogs. C R Seances Soc Biol Fil. 1977;171(4):771–7.
35. del Valle-Laisequilla C, et al. Ketorolac tromethamine improves the analgesic effect of hyoscine butylbromide in patients with intense cramping pain from gastrointestinal or genitourinary origin. Arzneimittelforschung. 2012;62(12):603–8.
36. Gross NJ. Anticholinergic agents in asthma and COPD. Eur J Pharmacol. 2006;533(1–3):36–9.
37. Freud S. Über Coca (1884). Psyche. 1973;27(5):487–511.
38. Kukula-Koch, W. and J. Widelski, Pharmacognosy. Fundamentals, Applications and Strategies. Academic Press: Cambridge. USA: MA; 2017.
39. Worek F, Thiermann H, Wille T. Organophosphorus compounds and oximes: a critical review. Arch Toxicol. 2020;94(7):2275–92.
40. Wildiers H, et al. Atropine, hyoscine butylbromide, or scopolamine are equally effective for the treatment of death rattle in terminal care. J Pain Symptom Manage. 2009;38(1):124–33.
41. Pigatto AG, et al. Tropane alkaloids and calystegines as chemotaxonomic markers in the Solanaceae. An Acad Bras Ciênc. 2015;87:2139–49.
42. Sweta V, Lakshmi T. Pharmacological profile of tropane alkaloids. J Chem Pharm Res. 2015;7(5):117–9.
43. Huang J-P, et al. Tropane alkaloid biosynthesis: a centennial review. Nat Prod Rep. 2021;38(9):1634–58.
44. Yamada Y, Tabata M. Plant biotechnology of tropane alkaloids. Plant Biotechnol. 1997;14(1):1–10.
45. Abia WA, et al. Tropane alkaloid contamination of agricultural commodities and food products in relation to consumer health: learnings from the 2019 Uganda food aid outbreak. Compre Rev Food Sci Food Saf. 2021;20(1):501–25.
46. Adamse P, et al. Tropane alkaloids in food: poisoning incidents. Quality Assur Saf Crops Foods. 2014;6(1):15–24.
47. Jank B, Rath J. Emerging tropane alkaloid contaminations under climate change. Trends Plant Sci. 2021;26(11):1101–3.
48. Dehghan E, et al. Review on new techniques in tropane alkaloids production. J Med Plants. 2010;9(33):149–64.
49. Araújo Neto JF, et al. Cytotoxic activity of tropane alkaloides of species of Erythroxylum. Mini Rev Med Chem. 2021;21(17):2458–80.
50. Stegelmeier BL, et al. Selected poisonous plants affecting animal and human health. In: Haschek and Rousseaux’s Handbook of Toxicologic Pathology. Elsevier; 2013. p. 1259–314.
51. Kaliappan KP, et al. A versatile access to calystegine analogues as potential glycosidases inhibitors. J Org Chem. 2009;74(16):6266–74.
52. Geiger PL, Hesse K. Darstellung des atropins. Ann Pharm. 1833;5(1):43–81.
53. Schmidt E, Henschke H. Über die Alkaloide der Wurzel von Scopolia japonica. Arch Pharm. 1888;226(5):185–203.
54. Lossen W, et al. Ueber das Atropin. Annalen der Chemie und Pharmacie. 1864;131(1):43–9.
55. Gaedcke F. Ueber das Erythroxylin, dargestellt aus den Blättern des in Süd-Amerika kultivierten Strauches Erythroxylon Coca Lam. 1854.
56. Niemann A, Über eine neue organische Base in den Cocablättern: Inaug.-Diss. von Göttingen. Druck d. Buchdr. von EA Huth: Univers; 1860.
57. Knapp R, et al. Neurotransmitter Receptors. 2003.
58. Aronstam R, Patil P. Muscarinic receptors: autonomic neurons. 2009.
59. Fisher SK, Wonnacott S. Acetylcholine. In: Basic neurochemistry. Elsevier;2012. p. 258–82.
60. Abrams P, et al. Muscarinic receptors: their distribution and function in body systems, and the implications for treating overactive bladder. Br J Pharmacol. 2006;148(5):565–78.
61. Scarr E. Muscarinic receptors: their roles in disorders of the central nervous system and potential as therapeutic targets. CNS Neurosci Ther. 2012;18(5):369–79.
62. Ho TN, Abraham N, Lewis RJ. Structure-function of neuronal nicotinic acetylcholine receptor inhibitors derived from natural toxins. Front Neurosci. 2020;89:1209.
63. Colombo SF, et al. Biogenesis, trafficking and up-regulation of nicotinic ACh receptors. Biochem Pharmacol. 2013;86(8):1063–73.
64. Millar NS, Harkness PC. Assembly and trafficking of nicotinic acetylcholine receptors. Mol Membr Biol. 2008;25(4):279–92.
65. D’Andrea MR, Nagele RG. Targeting the alpha 7 nicotinic acetylcholine receptor to reduce amyloid accumulation in Alzheimer’s disease pyramidal neurons. Curr Pharm Des. 2006;12(6):677–84.
66. Freedman R, et al. Evidence in postmortem brain tissue for decreased numbers of hippocampal nicotinic receptors in schizophrenia. Biol Psychiat. 1995;38(1):22–33.
67. Wang HY, et al. Amyloid peptide Aβ1-42 binds selectively and with picomolar affinity to α7 nicotinic acetylcholine receptors. J Neurochem. 2000;75(3):1155–61.
68. Acevedo-Rodriguez A, et al. Cocaine inhibition of nicotinic acetylcholine receptors influences dopamine release. Front Synaptic Neurosci. 2014;6:19.
69. Francis MM, et al. Subtype-selective inhibition of neuronal nicotinic acetylcholine receptors by cocaine is determined by the α4 and β4 subunits. Mol Pharmacol. 2000;58(1):109–19.
70. Sanjakdar SS, et al. Differential roles of α6β2* and α4β2* neuronal nicotinic receptors in nicotine-and cocaine-conditioned reward in mice. Neuropsychopharmacology. 2015;40(2):350–60.
71. Berizzi AE, et al. Molecular mechanisms of action of M5 muscarinic acetylcholine receptor allosteric modulators. Mol Pharmacol. 2016;90(4):427–36.
72. Dulawa SC, Janowsky DS. Cholinergic regulation of mood: from basic and clinical studies to emerging therapeutics. Mol Psychiatry. 2019;24(5):694–709.
73. Říčný J, Gualtieri F, Tuček S. Constitutive inhibitory action of muscarinic receptors on adenylyl cyclase in cardiac membranes and its stereospecific suppression by hyoscyamine. Physiol Res. 2002;51:131–7.
74. Jakubík J, et al. Constitutive activity of the M1–M4 subtypes of muscarinic receptors in transfected CHO cells and of muscarinic receptors in the heart cells revealed by negative antagonists. FEBS Lett. 1995;377(2):275–9.
75. Vogel WK, et al. Porcine m2 muscarinic acetylcholine receptoreffector coupling in chinese hamster ovary cells (?). J Biol Chem. 1995;270(26):15485–93.
76. Perera RK, et al. Atropine augments cardiac contractility by inhibiting cAMP-specific phosphodiesterase type 4. Sci Rep. 2017;7(1):1–8.
77. Schmeller T, et al. Binding of tropane alcaloids to nicotinic and muscarinic acetylcholine receptors. Pharmazie. 1995;50(7):493–5.
78. Falsafi SK, et al. Scopolamine administration modulates muscarinic, nicotinic and NMDA receptor systems. PLoS ONE. 2012;7(2): e32082.
79. Gyermek L. Structure-activity relationships among derivatives of dicarboxylic acid esters of tropine. Pharmacol Ther. 2002;96(1):1–21.
80. McLendon K, Preuss CV. Atropine, in StatPearls. 2021, StatPearls Publishing.
81. Mirakhur R. Comparative study of the effects of oral and im atropine and hyoscine in volunteers. Br J Anaesth. 1978;50(6):591–8.
82. Shaoul E, et al. Transdermal delivery of scopolamine by natural submicron injectors: in-vivo study in pig. PLoS ONE. 2012;7(2): e31922.
83. More SR, Dabhade SS, Ghongane BB. Drug audit of intravenous anaesthetic agents in tertiary care hospital. J Clin Diagn Res. 2015;9(11):25.
84. Brown J, Taylor P. Agonists and antagonists of mucarinic receptors. In: Pharmacological basis of therapeutic. 10th ed. New York: McGraw-Hill;2003. p. 162–81.
85. FDA, Atropine. 2018.
86. John H, et al. Simultaneous quantification of atropine and scopolamine in infusions of herbal tea and Solanaceae plant material by matrixassisted laser desorption/ionization time-of-flight (tandem) mass spectrometry. Rapid Commun Mass Spectrom. 2018;32(22):1911–21.
87. Fuchs C, Schwabe M. Rectal premedication using ketaminedehydrobenzperidol- atropine in childhood. Anaesthesiol Reanim. 1990;15(5):322–6.
88. Olsson G, et al. Plasma concentrations of atropine after rectal administration. Anaesthesia. 1983;38(12):1179–82.
89. Wang X, et al. A comparison of two different doses of rectal ketamine added to 0.5 mg kg-1 midazolam and 0.02 mg kg-1 atropine in infants and young children. Anaesthesia Intens Care. 2010;38(5):900–4.
90. Ricard F, et al. Measurement of atropine and scopolamine in hair by LC–MS/MS after Datura stramonium chronic exposure. Forensic Sci Int. 2012;223(1–3):256–60.
91. Kalser SC. The fate of atropine in man. Ann N Y Acad Sci. 1971;179(1):667–83.
92. Harrison PK, Tattersall JE, Gosden E. The presence of atropinesterase activity in animal plasma. Naunyn Schmiedebergs Arch Pharmacol. 2006;373(3):230–6.
93. Hinderling PH, Gundert-Remy U, Schmidlin O. Integrated pharmacokinetics and pharmacodynamics of atropine in healthy humans I: Pharmacokinetics. J Pharm Sci. 1985;74(7):703–10.
94. Van der Meer M, Hundt H, Müller F. The metabolism or atropine in man. J Pharm Pharmacol. 1986;38(10):781–4.
95. Lochner M, Thompson AJ. The muscarinic antagonists scopolamine and atropine are competitive antagonists at 5-HT3 receptors. Neuropharmacology. 2016;108:220–8.
96. Zhang XC, et al. Postoperative anticholinergic poisoning: concealed complications of a commonly used medication. J Emerg Med. 2017;53(4):520–3.
97. Renner UD, Oertel R, Kirch W. Pharmacokinetics and pharmacodynamics in clinical use of scopolamine. Ther Drug Monit. 2005;27(5):655–65.
98. FDA. Transderm scop. 2013.
99. Nachum Z, et al. Scopolamine bioavailability in combined oral and transdermal delivery. J Pharmacol Exp Ther. 2001;296(1):121–3.
100. Wada S, et al. Metabolism in vivo of the tropane alkaloid, scopolamine, in several mammalian species. Xenobiotica. 1991;21(10):1289–300.
101. Cayman. 2022; Available from: https:// cdn. cayma nchem. com/ cdn/ msds/ 14108m. pdf.
102. FDA, Cocaine. 2017.
103. Paly D, et al. Plasma cocaine concentrations during cocaine paste smoking. Life Sci. 1982;30(9):731–8.
104. Jatlow P. Cocaine: analysis, pharmacokinetics, and metabolic disposition. Yale J Biol Med. 1988;61(2):105.
105. Javaid J, et al. Kinetics of cocaine in humans after intravenous and intranasal administration. Biopharm Drug Dispos. 1983;4(1):9–18.
106. Coe MA, et al. Bioavailability and pharmacokinetics of oral cocaine in humans. J Anal Toxicol. 2018;42(5):285–92.
107. Jufer RA, et al. Elimination of cocaine and metabolites in plasma, saliva, and urine following repeated oral administration to human volunteers. J Anal Toxicol. 2000;24(7):467–77.
108. Dreyfuss P, Vogel D, Walsh N. The use of transdermal scopolamine to control drooling: A case report. Am J Phys Med Rehab. 1991;70(4):220–2.
109. Attias J, et al. Efficacy of transdermal scopolamine against seasickness: a 3-day study at sea. Aviat Space Environ Med. 1987;58(1):60–2.
110. Spinks A, Wasiak J. Scopolamine (hyoscine) for preventing and treating motion sickness. Cochrane Database Systema Rev. 2011;657:6.
111. Salmanroghani H, et al. The efficacy and safety of low dose versus usual dose of hyoscine during endoscopic retrograde cholangiopancreatography: a randomized clinical trial. Clin Pharmacol. 2020;12:123.
112. Groth ML, Langenback EG, Foster WM. Influence of inhaled atropine on lung mucociliary function in humans. Am Rev Respir Dis. 1991;144(5):1042–7.
113. Julu P, Adler J, Hondo R. Vagal tone in healthy-volunteers given atropine and in diabetic-patients. In Journal Of Physiology-London. 1991. Cambridge Univ Press 40 West 20th Street, New York, Ny 10011–4211.
114. Gomez-Mancilla B, Boucher R, Bedard PJ. Effect of clonidine and atropine on rest tremor in the MPTP monkey model of parkinsonism. Clin Neuropharmacol. 1991;14(4):359–66.
115. FDA. Benztropine. 1996.
116. Schlagmann C, Remien J. Treatment of Parkinson disease. Klin Wochenschr. 1986;64(19):939–42.
117. Rothman RB, et al. Dopamine transport inhibitors based on GBR12909 and benztropine as potential medications to treat cocaine addiction. Biochem Pharmacol. 2008;75(1):2–16.
118. Sneader W. Drug discovery: a history. New York: Wiley; 2005.
119. Gilani S, Cobbin L. Interaction of himbacine with carbachol at muscarinic receptors of heart and smooth muscle. Arch Int Pharmacodyn Ther. 1987;290(1):46–53.
120. FDA. Hydrocodane. 2017.
121. FDA. Trospium Chloride. 2007.
122. Rudy D, et al. Multicenter phase III trial studying trospium chloride in patients with overactive bladder. Urology. 2006;67(2):275–80.
123. Sorbe B, et al. Tropisetron (Navoban) in the prevention of chemotherapy- induced nausea and vomiting—the Nordic experience. Support Care Cancer. 1994;2(6):393–9.
124. WHO. Hyoscine butylbromide-EML. 2013.
125. Tytgat GN. Hyoscine butylbromide. Drugs. 2007;67(9):1343–57.
126. FDA. N-buscopan 2004.
127. FDA. Spiriva. 2009.
128. Barnes PJ. The pharmacological properties of tiotropium. Chest. 2000;117(2):63S-66S.
129. FDA. Tetracaine. 2016.
130. Dewick PM. Medicinal natural products: a biosynthetic approach. New York: Wiley; 2002.
131. Noorily AD, Noorily SH, Otto RA. Cocaine, lidocaine, tetracaine: which is best for topical nasal anesthesia? Anesth Analg. 1995;81(4):724–7.
132. Drugs. Tetracaine hydrochloride. 2022.
133. Gray SL, et al. Cumulative use of strong anticholinergics and incident dementia: a prospective cohort study. JAMA Intern Med. 2015;175(3):401–7.
134. Drugs. Numbrino. 2020.
135. Springer. Cocaine intranasal. 2020.
136. Drugs. Lidocaine Anesthesia. 2020.
137. Drugs. Lidocaine Dosage. 2020.
138. Cobo R, et al. Mechanisms underlying the strong inhibition of muscletype nicotinic receptors by tetracaine. Front Mol Neurosci. 2018;11:193.
139. Shoshan-Barmatz V, Zchut S. The interaction of local anesthetics with the ryanodine receptor of the sarcoplasmic reticulum. J Membr Biol. 1993;133(2):171–81.
140. Drugs. Tiotropium Dosage. 2022.
141. Barnes PJ, et al. Asthma and COPD: basic mechanisms and clinical management. 2009.
142. Miyoshi K, et al. Histamine H1 receptor down-regulation mediated by M3 muscarinic acetylcholine receptor subtype. J Pharmacol Sci. 2004;95(4):426–34.
143. Medsafe. Tropisetron.
144. Chan TY. Worldwide occurrence and investigations of contamination of herbal medicines by tropane alkaloids. Toxins. 2017;9(9):284.
145. Bryson PD, et al. Burdock root tea poisoning: Case report involving a commercial preparation. JAMA. 1978;239(20):2157–2157.
146. Marín-Sáez J, Romero-González R, Frenich AG. Reliable determination of tropane alkaloids in cereal based baby foods coupling on-line spe to mass spectrometry avoiding chromatographic step. Food Chem. 2019;275:746–53.
147. Adams RG, et al. Plasma pharmacokinetics of intravenously administered atropine in normal human subjects. J Clin Pharmacol. 1982;22(10):477–81.
148. Beuerle T, et al. Scientific Opinion on Tropane alkaloids in food and feed. EFSA J. 2013;11(10):1–113.
149. González-Gómez L, et al. Occurrence and Chemistry of Tropane Alkaloids in Foods, with a Focus on Sample Analysis Methods: A Review on Recent Trends and Technological Advances. Foods. 2022;11(3):407.
150. Haughey SA, et al. Laboratory investigations into the cause of multiple serious and fatal food poisoning incidents in Uganda during 2019. Food Control. 2021;121: 107648.
151. Mulder PP, et al. Occurrence of tropane alkaloids in food. EFSA Supporting Publications. 2016;13(12):1140E.
152. O’Shaughnessy KM. Cholinergic and antimuscarinic (anticholinergic) mechanisms and drugs. In: Clinical Pharmacology. Elsevier; 2012. p. 372–81.
153. Scavone JM, et al. Pharmacokinetics and pharmacodynamics of diphenhydramine 25 mg in young and elderly volunteers. J Clin Pharmacol. 1998;38(7):603–9.
154. Broderick ED, Metheny H, Crosby B. Anticholinergic toxicity. StatPearls. 2020.
155. Holstege CP, Borek HA. Toxidromes. Crit Care Clin. 2012;28(4):479–98.
156. Ali-melkkilä T, Kanto J, Iisalo E. Pharmacokinetics and related pharmacodynamics of anticholinergic drugs. Acta Anaesthesiol Scand. 1993;37(7):633–42.
157. Furbee B. Neurotoxic plants. In: Clinical neurotoxicology. Elsevier; 2009. p. 523–42.
158. Isbister GK, Kumar VVP. Indications for single-dose activated charcoal administration in acute overdose. Curr Opin Crit Care. 2011;17(4):351–7.
159. Arens AM, et al. Safety and effectiveness of physostigmine: a 10-year retrospective review. Clin Toxicol. 2018;56(2):101–7.
160. Derinoz O, Emeksiz HC. Use of physostigmine for cyclopentolate overdose in an infant. Pediatrics. 2012;130(3):e703–5.
161. Swami S, et al. Anticholinergic drug use and risk to cognitive performance in older adults with questionable cognitive impairment: a crosssectional analysis. Drugs Aging. 2016;33(11):809–18.
162. Caccamo A, et al. M1 receptors play a central role in modulating AD-like pathology in transgenic mice. Neuron. 2006;49(5):671–82.
163. Perry EK, et al. Increased Alzheimer pathology in Parkinson’s disease related to antimuscarinic drugs. Ann Neurol. 2003;54(2):235–8.
164. Gray SL, et al. Exposure to strong anticholinergic medications and dementia-related neuropathology in a community-based autopsy cohort. J Alzheimers Dis. 2018;65(2):607–16.
165. Richardson K, et al. Anticholinergic drugs and risk of dementia: casecontrol study. BMJ. 2018;361:456.
166. Salahudeen MS, Duffull SB, Nishtala PS. Impact of anticholinergic discontinuation on cognitive outcomes in older people: a systematic review. Drugs Aging. 2014;31(3):185–92.
167. Limback-Stokin MM, et al. Anticholinergic medications and cognitive function in late mid-life. Alzheimer Dis Assoc Disord. 2018;32(3):262.
168. Lupu AM, et al. Reducing anticholinergic medication burden in patients with psychotic or bipolar disorders. J Clin Psychiatry. 2017;78(9):17141.
169. Campbell NL, et al. Association of anticholinergic burden with cognitive impairment and health care utilization among a diverse ambulatory older adult population. Pharmacotherapy. 2016;36(11):1123–31.
170. Chatterjee S, et al. Anticholinergic burden and risk of cognitive impairment in elderly nursing home residents with depression. Res Social Adm Pharm. 2020;16(3):329–35.
171. Wouters H, et al. Long-term exposure to anticholinergic and sedative medications and cognitive and physical function in later life. J Gerontol A. 2020;75(2):357–65.
172. Mueller A, et al. Anticholinergic burden of long-term medication is an independent risk factor for the development of postoperative delirium: a clinical trial. J Clin Anesth. 2020;61: 109632.
173. Rigor J, et al. Prehospital anticholinergic burden is associated with delirium but not with mortality in a population of acutely Ill medical patients. J Am Med Dir Assoc. 2020;21(4):481–5.
174. Jamieson HA, et al. Drug burden and its association with falls among older adults in New Zealand: a national population cross-sectional study. Drugs Aging. 2018;35(1):73–81.
175. Boustani M, et al. Impact of anticholinergics on the aging brain: a review and practical application. 2008.
176. Cebron-Lipovec N, Jazbar J, Kos M. Anticholinergic burden in children, adults and older adults in Slovenia: A Nationwide database study. Sci Rep. 2020;10(1):1–8.
177. Reinold J, et al. Anticholinergic burden: First comprehensive analysis using claims data shows large variation by age and sex. PLoS ONE. 2021;16(6): e0253336.
[1] Patrick O. Sakyi, Richard K. Amewu, Robert N. O. A. Devine, Emahi Ismaila, Whelton A. Miller, Samuel K. Kwofie. The Search for Putative Hits in Combating Leishmaniasis: The Contributions of Natural Products Over the Last Decade[J]. Natural Products and Bioprospecting, 2021, 11(5): 489-544.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed