Natural Products and Bioprospecting    2014, Vol. 4 Issue (4) : 251-255     DOI: 10.1007/s13659-014-0031-5
Short communication |
Molecular Docking of Bacosides with Tryptophan Hydroxylase: A Model to Understand the Bacosides Mechanism
David Mary Rajathei1, Jayakumar Preethi2, Hemant K. Singh3, Koilmani Emmanuvel Rajan2
1. Department of Bioinformtics, Bharathidasan University, Tiruchirappalli 620024, India;
2. Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, India;
3. Laboratories of CNS Disorder, Learning & Memory, Division of Pharmacology, Central Drug Research Institute, Lucknow 226031, India
Download: PDF(1305 KB)   HTML ()  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  Tryptophan hydroxylase(TPH) catalyses L-tryptophan into 5-hydroxy-L-tryptophan, which is the first and ratelimiting step of serotonin(5-HT) biosynthesis. Earlier, we found that TPH2 up-regulated in the hippocampus of postnatal rats after the oral treatment of Bacopa monniera leaf extract containing the active compound bacosides. However, the knowledge about the interactions between bacosides with TPH is limited. In this study, we take advantage of in silico approach to understand the interaction of bacoside-TPH complex using three different docking algorithms such as HexDock, PatchDock and AutoDock. All these three algorithms showed that bacoside A and A3 well fit into the cavity consists of active sites. Further, our analysis revealed that major active compounds bacoside A3 and A interact with different residues of TPH through hydrogen bond. Interestingly, Tyr235, Thr265 and Glu317 are the key residues among them, but none of them are either at tryptophan or BH4 binding region. However, its note worthy to mention that Tyr 235 is a catalytic sensitive residue, Thr265 is present in the flexible loop region and Glu317 is known to interacts with Fe. Interactions with these residues may critically regulate TPH function and thus serotonin synthesis. Our study suggested that the interaction of bacosides(A3/A) with TPH might up-regulate its activity to elevate the biosynthesis of 5-HT, thereby enhances learning and memory formation.
Keywords Serotonin      Tryptophan hydroxylase      Bacosides      Docking     
Fund:We are grateful to the editor and anonymous referees for their comments that improved the final version of this article.
Issue Date: 11 February 2018
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
David Mary Rajathei
Jayakumar Preethi
Hemant K. Singh
Koilmani Emmanuvel Rajan
Trendmd:   
Cite this article:   
David Mary Rajathei,Jayakumar Preethi,Hemant K. Singh, et al. Molecular Docking of Bacosides with Tryptophan Hydroxylase: A Model to Understand the Bacosides Mechanism[J]. Natural Products and Bioprospecting, 2014, 4(4): 251-255.
URL:  
http://npb.kib.ac.cn/EN/10.1007/s13659-014-0031-5     OR     http://npb.kib.ac.cn/EN/Y2014/V4/I4/251
1. P. Jain, D.K. Kulshreshtha, Phytochemistry 33, 449-451 (1993)
2. S. Rastogi, R. Pal, D.K. Kulshreshtha, Phytochemistry 36, 133-137 (1994)
3. S. Rastogi, D.K. Kulshreshtha, Ind. J. Chem. 38B, 353-356 (1999)
4. S. Garai, S.B. Mahato, K. Ohtani, K. Yamasaki, Phytochemistry 42, 815-820 (1996)
5. S. Garai, S.B. Mahato, K. Ohtani, K. Yamasaki, Phytochemistry 43, 447-449 (1996)
6. S.B. Mahato, S. Garai, A.K. Chakravarty, Phytochemistry 53, 711-714 (2000)
7. C.C. Hou, S.J. Lin, J.T. Cheng, F.L. Hsu, J. Nat. Prod. 65, 1759-1763 (2002)
8. A.K. Chakravarty, T. Sarkar, T. Nakane, N. Kawahara, K. Masuda, Chem. Pharm. Bull. 50, 1616-1618 (2002)
9. A.K. Chakravarty, S. Garai, K. Masuda, T. Nakane, N. Kawahara, Chem. Pharm. Bull. 51, 215-217 (2003)
10. H.K. Singh, B.N. Dhawan, J. Ethnopharmacol. 5, 205-214 (1982)
11. D. Vohora, S.N. Pal, K.K. Pillai, J. Ethnopharmacol. 71, 383-390 (2000)
12. S. Prabhakar, M.K. Saraf, P. Pandhi, A. Anand, Psychopharmacology 200, 27-37 (2008)
13. S.K. Hota, K. Barhwal, I. Baitharu, D. Prasad, S.B. Singh, G. Ilavazhagan, Neurobiol. Dis. 34, 23-39 (2009)
14. M.K. Saraf, S. Prabhakar, A. Anand, Neuroscience 160, 149-155 (2009)
15. M.K. Saraf, A. Anand, S. Prabhakar, Neurochem. Res. 35, 279-287 (2010)
16. K.E. Rajan, H.K. Singh, A. Parkavi, D.C. Prisila, Neurochem. Res. 36, 2136-2144 (2011)
17. D.C. Prisila, H.K. Singh, J. Preethi, K.E. Rajan, J. Neurosci. Res. 90, 2053-2064 (2012)
18. H.K. Singh, B.N. Dhawan, J. Pharmacol. 29, S359-S365 (1997)
19. S.K. Bhattacharya, A. Bhattacharya, A. Kumar, Phytother. Res. 14, 174-179 (2000)
20. A. Das, G. Shanker, C. Nath, R. Pal, S. Singh, H. Singh, Pharm. Biochem. Behav. 73, 893-900 (2002)
21. N. Sheikh, A. Ahmad, K.B. Siripurapu, V.K. Kuchibhotla, S. Singh, G. Palit, J. Ethnopharmacol. 111, 671-676 (2007)
22. M.K. Saraf, S. Prabhakar, A. Anand, Neuroscience 160, 149-155 (2009)
23. J. Mathew, J. Paul, M.S. Nandhu, C.S. Paulose, Fitoterapia 81(5), 315-322 (2010)
24. D.C. Prisila, A. Ganesh, P. Geraldine, M.A. Akbarsha, K.E. Rajan, J. Ethnopharmacol. 134, 55-61 (2011)
25. A. Barzilai, T.E. Kennedy, J.D. Sweatt, E.R. Kandel, Neuron 2, 1577-1586 (1989)
26. M. Meeter, L. Talamini, J.A. Schmitt, W.J. Riedel, Neuropsychopharmacology 31, 712-720 (2006)
27. Y.Y. Huang, E.R. Kandel, J. Neurosci. 27, 3111-3119 (2007)
28. R.M. Weragoda, E.T. Walters, J. Neurophysiol. 98, 1231-1239 (2007)
29. W. Lovenberg, E. Jequier, A. Sjoerdsma, Science 155, 217-219 (1967)
30. A. Martínez, P.M. Knappskog, J. Haavik, Curr. Med. Chem. 8, 1077-1091 (2001)
31. D.J. Walther, J.U. Peter, S. Bashammakh, H. Hortnagl, M. Voits, H. Fink, M. Bader, Science 299, 76 (2003)
32. X. Zhang, J. Beaulieu, T.D. Sotnikova, R.R. Gainetdinov, M.G. Caron, Science 305, 217 (2004)
33. D.J. Walther, M. Bader, Biochem. Pharmacol. 66, 1673-1680 (2003)
34. P.D. Patel, C. Pontrello, S. Burke, Biol. Psychiatry 55, 428-433 (2004)
35. J. McKinney, P.M. Knappskog, J. Haavik, J. Neurochem. 92, 311-320 (2005)
36. I. Winge, J.A. McKinney, M. Ying, C.S. D'Santos, R. Kleppe, P.M. Knappskog, J. Haavik, Biochem. J. 410, 195-204 (2008)
37. F. Chamas, L. Srova, E.L. Sabban, Neurosci. Lett. 267, 157-160 (1999)
38. S.W. Kim, S.Y. Pak, O. Hwang, Mol. Pharmacol. 61, 778-785 (2002)
39. L. Wang, H. Erlandsen, J. Haavik, P.M. Knappskog, R.C. Biochemistry 41, 12569-12574 (2002)
40. H. Sato, L.M. Shewchuk, J. Tang, J. Chem. Inf. Model. 46, 2552-2562 (2006)
41. D.B. Kitchen, H. Decornez, R.F. John, B. Jurgen, Nat. Rev. Drug. Discov. 3, 935-949 (2004)
42. W.M. Pardridge, J. Neurovirol. 5, 556-569 (1999)
43. D.B. Kitchen, H. Decornez, J.R. Furr, J. Bajorath, Nat. Rev. Drug. Discov. 3, 935-949 (2004)
44. M.S. Windahl, C.R. Petersen, H.E. Christensen, P. Harris, Biochemistry 47, 12087-12094 (2008)
45. J. McKinney, K. Teigen, N.A. Froystein, C. Salaun, P.M. Knappskog, J. Haavik, A. Martinez, Biochemistry 40, 15591-15601 (2000)
46. G.C.T. Jiang, G.J. Yohrling IV, J.D. Schmitt, K.E. Vrana, J. Mol. Biol. 302, 1005-1017 (2000)
47. N.M. O'Boyle, M. Banck, C.A. James, C. Morley, T. Vandermeersch, G.R. Hutchison, J. Cheminform. 3, 33 (2011)
48. D. Schneidman-Duhovny, Y. Inbar, R. Nussinov, H.J. Wolfson, Nucl. Acids. Res. 33, W363-W367 (2005)
49. G.M. Morris, R. Huey, W. Lindstrom, M.F. Sanner, R.K. Belew, D.S. Goodsell, A.J. Olson, J. Comput. Chem. 16, 2785-2791 (2009)
50. G. Macindoe, L. Mavridis, V. Venkatraman, M.D. Devignes, D.W. Ritchie, Nucl. Acids Res. 38, W445-W449 (2010)
51. N. Guex, M.C. Peitsch, Electrophoresis 18, 2714-2723 (1997)
[1] Yinglan Pu, Hui Liu, Yeheng Zhou, Jiale Peng, Yaping Li, Penghua Li, Yingying Li, Xingyong Liu, Li Zhang. In silico Discovery of Novel FXa Inhibitors by Pharmacophore Modeling and Molecular Docking[J]. Natural Products and Bioprospecting, 2017, 7(3): 249-256.
[2] Mehtab Parveen, Faheem Ahmad, Ali Mohammed Malla, Shaista Azaz, Mahboob Alam, Omer A. Basudan, Manuela Ramos Silva, Pedro S. Pereira Silva. Acetylcholinesterase and Cytotoxic Activity of Chemical Constituents of Clutia lanceolata Leaves and its Molecular Docking Study[J]. Natural Products and Bioprospecting, 2016, 6(6): 267-278.
[3] Christian Bäcker, Malgorzata N. Drwal, Robert Preissner, Ulrike Lindequist. Inhibition of DNA-Topoisomerase I by Acylated Triterpene Saponins from Pittosporum angustifolium Lodd[J]. Natural Products and Bioprospecting, 2016, 6(2): 141-147.
[4] A.Anita Margret,T.Nargis Begum, S.Parthasarathy,S.Suvaithenamudhan. A Strategy to Employ Clitoria ternatea as a Prospective Brain Drug Confronting Monoamine Oxidase (MAO) Against Neurodegenerative Diseases and Depression[J]. Natural Products and Bioprospecting, 2015, 5(6): 293-306.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed