ORIGINAL ARTICLES |
|
|
|
|
|
Hypecotumines A-D, new isoquinoline alkaloids with potential PCSK9 inhibition activity from Hypecoum erectum L. |
Yinling Wei1,2, Hongyan Wen1, Lian Yang1, Bodou Zhang1,2, Xiaoyu Li1,2, Sheng Li1, Jing Dong1, Zhenzhen Liang1, Yu Zhang1 |
1. State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract Four new isoquinoline alkaloids, hypecotumines A-D (1-4), were isolated and identified from the whole herbs of Hypecoum erectum L. Their structures were determined by a combination of HRESIMS, NMR, and X-ray diffraction analysis methods. Compounds 1-4 were characterized by a terminal double bond at C-9 and their plausible biosynthetic pathway was hypothesized. Since PCSK9 plays a key role in the development of cardiovascular disease (CVD), exploration of PCSK inhibitors from natural products are beneficial for drug discovery of CVD treatment. SPR and Western blot assays showed compound 4 had PCSK9 inhibition activity with KD value of 59.9 μM and thus elevated the LDLR level. Further molecular docking studies demonstrated that 4 and PCSK9 could form stable interactions via key hydrogen bonds.
|
Keywords
Hypecoum erectum L.
Isoquinoline alkaloids
Hypecotumines A-D
PCSK9 inhibition
|
Fund:This work was financially supported by National Key R&D Program of China (2022YFF1100301), Major Science and Technology Project of Henan Province (231100310200), Yunnan Applied Basic Research Projects (202301AS070057), Yunnan Science and Technology Department (202305AH340005), and DR PLANT. |
Corresponding Authors:
Yu Zhang,E-mail:zhangyu@mail.kib.ac.cn
E-mail: zhangyu@mail.kib.ac.cn
|
Issue Date: 13 December 2024
|
|
|
[1] World Health Organization. Cardiovascular diseases (CVDs) WHO. 2021. https://www.who.int/en/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds). [2] Mach F, Baigent C, Catapano AL, Koskinas KC, Casula M, Badimon L, Chapman MJ, De Backer GG, Delgado V, Ference BA, Graham IM, Halliday A, Landmesser U, Mihaylova B, Pedersen TR, Riccardi G, Richter DJ, Sabatine MS, Taskinen MR, Tokgozoglu L, Wiklund O. 2019 ESC/EAS guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Eur Heart J. 2020;41(1):111-88. [3] Mihaylova B, Emberson J, Blackwell L, Keech A, Simes J, Barnes EH, Voysey M, Gray A, Collins R, Baigent C. Cholesterol Treatment Trialists’ (CTT) Collaborators: the effects of lowering LDL cholesterol with statin therapy in people at low risk of vascular disease: meta-analysis of individual data from 27 randomised trials. Lancet. 2012;380(9841):581-90. [4] Koo BK. Statin for the primary prevention of cardiovascular disease in patients with diabetes mellitus. Diabetes Metab J. 2014;38(1):32-4. [5] Pijlman AH, Huijgen R, Verhagen SN, Imholz BP, Liem AH, Kastelein JJ, Abbink EJ, Stalenhoef AF, Visseren FL. Evaluation of cholesterol lowering treatment of patients with familial hypercholesterolemia: a large cross-sectional study in The Netherlands. Atherosclerosis. 2010;209(1):189-94. [6] Piper DE, Jackson S, Liu Q, Romanow WG, Shetterly S, Thibault ST, Shan B, Walker NPC. The crystal structure of PCSK9: a regulator of plasma LDL-cholesterol. Structure. 2007;15:545-52. [7] Abifadel M, Varret M, Rabès JP, Allard D, Ouguerram K, Devillers M, Cruaud C, Benjannet S, Wickham L, Erlich D, Derré A, Villéger L, Farnier M, Beucler I, Bruckert E, Chambaz J, Chanu B, Lecerf JM, Luc G, Moulin P, Weissenbach J, Prat A, Krempf M, Junien C, Seidah NG, Boileau C. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet. 2003;34(2):154-6. [8] Seidah NG, Benjannet S, Wickham L, Marcinkiewicz J, Jasmin SB, Stifani S, Basak A, Prat A, Chretien M. The secretory proprotein convertase neural apoptosis-regulated convertase 1 (NARC-1): liver regeneration and neuronal differentiation. Proc Natl Acad Sci U S A. 2003;100(3):928-33. [9] Brandts J, Ray KK. Novel and future lipid-modulating therapies for the prevention of cardiovascular disease. Nat Rev Cardiol. 2023;20:600-16. [10] Sun PT, Cao YG, Xue GM, Li M, Zhang CL, Zhao F, Cao ZY, Wang D, Gustafson KR, Zheng XK, Feng WS, Chen H. Hypeisoxazole A, a racemic pair of tetrahydroisoxazole-fused benzylisoquinoline alkaloids from Hypecoum erectum and structural revision of hypecoleptopine. Org Lett. 2022;24(7):1476-80. [11] Wen H, Lei J, Zhang D, Yuan X, Dang J, Li JM, Shao YY, Tao Y. Anti-inflammatory activity of total alkaloids from Hypecoum leptocarpum hook. f. et Thoms. Pharmacogn Mag. 2018;14(56):397-403. [12] Yuan HL, Zhao YL, Qin XJ, Liu YP, Yang XW, Luo XD. Diverse isoquinolines with anti-inflammatory and analgesic bioactivities from Hypecoum erectum. J Ethnopharmacol. 2021;270:113811. [13] Wei YL, Li S, Wen HY, Dong J, Liang ZZ, Li XY, Zhang Y. 1H NMR guided isolation of 3-arylisoquinoline alkaloids from Hypecoum erectum L. and their anti-inflammation activity. Phytochemistry. 2024;222:114093. [14] Wen H, Yuan X, Li C, Li J, Yue H. Two new isoquinoline alkaloids from Hypecoum leptocarpum Hook. f. et Thoms. Nat Prod Res. 2024;38(8):1392-7. [15] Singh A, Menéndez-Perdomo IM, Facchini PJ. Benzylisoquinoline alkaloid biosynthesis in opium poppy: an update. Phytochem Rev. 2019;18:1457-82. [16] Dang TT, Chen X, Facchini P. Acetylation serves as a protective group in noscapine biosynthesis in opium poppy. Nat Chem Biol. 2015;11:104-6. [17] Xu Z, Li Z, Ren F, Gao R, Wang Z, Zhang J, Zhao T, Ma X, Pu X, Xin T, Rombauts S, Sun W, Van de PY, Chen S, Song J. The genome of Corydalis reveals the evolution of benzylisoquinoline alkaloid biosynthesis in Ranunculales. Plant J. 2022;111:217-30. [18] Dewick PM. Alkaloids. In medicinal natural products: a biosynthetic approach. Chichester: John Wiley & Sons Ltd; 2002. p. 7-38. [19] Lintner NG, McClure KF, Petersen D, Londregan AT, Piotrowski DW, Wei L, Xiao J, Bolt M, Loria PM, Maguire B, Geoghegan KF, Huang A, Rolph T, Liras S, Doudna JA, Dullea RG, Cate JH. Selective stalling of human translation through small-molecule engagement of the ribosome nascent chain. PLoS Biol. 2018;16(4):e1002628. [20] Won H, Son MG, Pel P, Nhoek P, An CY, Kim YM, Chae HS, Chin YW. Chemical constituents from Morus alba with proprotein convertase subtilisin/kexin type 9 expression and secretion inhibitory activity. Org Biomol Chem. 2023;21(13):2801-8. [21] Guo P, Chen T, Hu X, Duan Y, Zheng L, Du G, Wang Q, Ding A, Qin G, Chen Y, Wang W. Lindenane sesquiterpenoid dimers from Chloranthus japonicus improve LDL uptake by regulating PCSK9 and LDLR. Bioorg Chem. 2024;142:106958. [22] Petrilli WL, Adam GC, Erdmann RS, Abeywickrema P, Agnani V, Ai X, Baysarowich J, Byrne N, Caldwell JP, Chang W, DiNunzio E, Feng Z, Ford R, Ha S, Huang Y, Hubbard B, Johnston JM, Kavana M, Lisnock JM, Liang R, Lu J, Lu Z, Meng J, Orth P, Palyha O, Parthasarathy G, Salowe SP, Sharma S, Shipman J, Soisson SM, Strack AM, Youm H, Zhao K, Zink DL, Zokian H, Addona GH, Akinsanya K, Tata JR, Xiong Y, Imbriglio JE. From screening to targeted degradation: strategies for the discovery and optimization of small molecule ligands for PCSK9. Cell Chem Biol. 2020;27(1):32-40.e3. [23] Huang M, Zhou Y, Duan D, Yang C, Zhou Z, Li F, Kong Y, Hsieh YC, Zhang R, Ding W, Xiao W, Puno P, Chen C. Targeting ubiquitin conjugating enzyme UbcH5b by a triterpenoid PC3-15 from Schisandra plants sensitizes triple-negative breast cancer cells to lapatinib. Cancer Lett. 2021;504:125-36. [24] Chen C, Liu JW, Guo LL, Xiong F, Ran XQ, Guo YR, Yao YG, Hao XJ, Luo RC, Zhang Y. Monoterpenoid indole alkaloid dimers from Kopsia arborea inhibit cyclin-dependent kinase 5 and tau phosphorylation. Phytochemistry. 2022;203:113392. |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|