ORIGINAL ARTICLES |
|
|
|
|
|
Arylated analogues of cypronazole: fungicidal effect and activity on human fibroblasts. Docking analysis and molecular dynamics simulations |
Natividad Herrera Cano1,4, Sebastian A. Andujar2, Cristina Theoduloz3, Daniel A. Wunderlin4, Ana N. Santiago5, Guillermo Schmeda-Hirschmann6, Ricardo D. Enriz2, Gabriela E. Feresin1 |
1 Instituto de Biotecnología, Facultad de Ingeniería, Universidad Nacional de San Juan, CONICET–CCT San Juan, Av. Libertador General San Martín1109 (O), 5400 San Juan, Argentina; 2 Facultad de Química, Bioquímica y Farma- cia- IMIBIO-SL (CONICET), Universidad Nacional de San Luis, Chacabuco 915, 5700 San Luis, Argentina; 3 Laboratorio de Cultivo Celular, Facultad de Ciencias de la Salud, Universidad de Talca, Casilla 747, 3460000 Talca, Chile; 4 ICYTAC, CONICET and Universidad Nacional de Córdoba, Facultad de Ciencias Quími- cas, Departamento, Química Orgánica, Ciudad Universitaria, Bv. Juan Filloy s/n, 5000 Córdoba, Argentina; 5 INFIQC, CONICET and Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento Química Orgánica, Ciudad Universitaria, Haya de La Torre S/N, 5000 Córdoba, Argentina; 6 Labo- ratorio de Química de Productos Naturales, Instituto de Química de Recursos Naturales, Universidad de Talca, Casilla 747, 3460000 Talca, Chile |
|
|
Abstract Triadimefon (TDM) and cyproconazole (CPZ) are two triazoles widely used as fungicides. Several azoles were synthesised starting from commercial TDM and CPZ. The compounds were evaluated against phytopathogenic filamentous fungi, including Aspergillus fumigatus (AF), A. niger (AN), A. ustus (AU), A. japonicus (AJ), A. terreus (AT), Fusarium oxysporum and Botrytis cinerea isolated from grapevine in the province of San Juan, Argentina. Three of the synthesised compounds (1-(Biphenyl-4-yloxy)-3,3-dimethyl-1-(1H-1,2,4-triazol-1-yl)butan-2-one, 1; 2-(Biphenyl-4-yl)-3-cyclopropyl-1-(1H-1,2,4-triazol-1-yl)butan-2-ol, 3; 3-Cyclopropyl-2-(4’-fluorobiphenyl-4-yl)-1-(1H-1,2,4-triazol1-yl)butan-2-ol, 4) presented remarkable in vitro fungicidal properties, with better effects than TDM and CPZ on some of the target fungi. Cytotoxicity was assessed using human lung fibroblasts MRC5. Derivative 1, with IC50 values of 389.4 μM, was less toxic towards MRC-5 human lung fibroblasts than commercial TDM (248.5 μM) and CPZ (267.4 μM). Docking analysis and molecular dynamics simulations suggest that the compounds present the same interaction in the binding pocket of the CYP51B enzyme and with the same amino acids as CPZ. The derivatives investigated could be considered broad-spectrum but with some selectivity towards imperfect fungi.
|
Keywords
Azoles
Antifungal cytotoxicity
Conformational and electronic analysis
|
Fund:This work was supported by the Consejo Nacional de Investigaciones Cientí- fcas y Técnicas (CONICET), Secretaría de Ciencia y Tecnología (SECYT-UNC), CICITCA UNSJ, IMIBIO-UNSL and Agencia Nacional de Promoción Científca y Tecnológica (ANPCyT). NHC gratefully acknowledges receipt of a fellowship from CONICET. G.S-H. and C.T. thank PIEI-QUIM-BIO, Universidad de Talca, for fnancial support. |
Corresponding Authors:
Natividad Herrera Cano, E-mail:nherrerac@unc.edu.ar
E-mail: nherrerac@unc.edu.ar
|
Issue Date: 26 April 2022
|
|
|
1.Dean R, Van Kan JAL, Pretorius ZA, Hammond-Kosack KE, Di Pietro A, Spanu PD, Rudd JJ, Dickman M, Kahmann R, Ellis J, Foster GD.The top 10 fungal pathogens in molecular plant pathology.Mol Plant Pathol.2012;13:414–30. 2.Hiner, CC, Townsend, CG, Lavy, BL, Harm J.de Blij’s 1983 Wine: a geographic appreciation.Prog Phys Geog Earth Environ.2014;38:674-684. 3.Masih EI, Slezack-Deschaumes S, Marmaras I, Barka EA, Vernet G, Charpentier C, Adholeya A, Paula B.Characterisation of the yeast Pichia membranifaciens and its possible use in the biological control of Botrytis cinerea, causing the grey mould disease of grapevine.FEMS Microbiol Lett.2001;202:227–32. 4.Williamson B, Tudzynsk B, Tudzynski P, van Kan JAL.Botrytis cinerea: the cause of grey mould disease.Mol Plant Pathol.2007;8:561–80. 5.Droby S, Lichter A.Post-harvest Botrytis infection: etiology, development and management.In: Elad Y, Williamson B, Tudzynski P, Delen N, editors.Botrytis: biology, pathology and control.Springer: The Netherlands; 2007.p.349–67. 6.Rupp S, Weber RWS, Rieger D, Detzel P, Hahn M.Spread of Botrytis cinerea strains with multiple fungicide resistance in German horticulture.Front Microbiol.2017;7:2075–87. 7.Berthiller F, Crews C, Dall’Asta C, De Saeger S, Haesaert G, Karlovsky P, Oswald IP, Seefelder W, Speijers G, Stroka J.Masked mycotoxins: a review.Mol Nutr Food Res.2013;57:165–86. 8.Visconti A, Perrone G, Cozzi G, Solfrizzo M.Managing ochratoxin A risk in the grape-wine food chain.Food Add Contam.2008;25:193–202. 9.Lamberth C, Dinges J.The significance of heterocycles for pharmaceuticals and agrochemicals.In: Luzzio FA, editor.Imides: medicinal, agricultural, synthetic applications and natural products chemistry.Wiley-VCH: Weinheim; 2012, p.3–20. 10.Lamberth C.Heterocyclic chemistry in crop protection.Pest Manag Sci.2013;69:1106–14. 11.Sheehan DJ, Hitchcock CA, Sibley CM.Current and emerging azole antifungal agents.Clin Microbiol Rev.1999;12:40–9. 12.Roberts TR, Hutson DH, Lee PW, Nicholls PH, Plimmer JR.Metabolic pathways of agrochemicals, Part 2: insecticides and fungicides.In: Roberts TR, Hutson DH, Lee PW, Nicholls PH, Plimmer JR, eds.RSC: Cambridge.1999; p.1011–1101. 13.Have AT, Dekkers E, Kay J, Phylip LH, van Kan JAL.An aspartic proteinase gene family in the filamentous fungus Botrytis cinerea contains members with novel features.Microbiol.2004;150:2475–89. 14.Cilindre C, Jégou S, Hovasse A, Schaeffer C, Castro AJ, Clément C, Van Dorsselae A, Jeandet P, Marchal R.Proteomic approach to identify champagne wine proteins as modified by Botrytis cinerea infection.J Proteome Res.2008;7:1199–208. 15.Choi S.Critical review on the carcinogenic potential of pesticides used in Korea, Asian Pac.J Cancer Prev.2014;15:5999–6003. 16.Roelofs MJE, Temming RA, Piersma AH, van den Berg M, van Duursen MBM.Corrigendum to “Conazole fungicides inhibit Leydig cell testosterone secretion and androgen receptor activation in vitro.Toxicol Rep.2014;1:271–83. 17.Heusinkveld HJ, Molendijk J, van den Berg M, Westerin RHS.Azole fungicides disturb intracellular Ca2+ in an additive manner in dopaminergic PC12 cells.Toxicol Sci.2013;134:374–81. 18.Hargrove TY, Wawrzak Z, Lamb DC, Guengerich FP, Lepesheva GI.Structure-functional characterization of cytochrome P450 sterol 14α-demethylase (CYP51B) from Aspergillus fumigatus and molecular basis for the development of antifungal drugs.J Biol Chem.2015;290:23916–34. 19.Becher R, Wirsel SG.Fungal cytochrome P450 sterol 14α-demethylase (CYP51) and azole resistance in plant and human pathogens.Appl Microbiol Biotechnol.2012;95:825–40. 20.Mellado E, Garcia-Effron G, Buitrago MJ, Alcazar-Fuoli L, Cuenca-Estrella M, Rodriguez-Tudela JL.Targeted gene disruption of the 14-α sterol demethylase (cyp51A) in Aspergillus fumigatus and its role in azole drug susceptibility.Antimicrob Agents Chemother.2005;49:2536–8. 21.Cano NH, Santiago AN.Arylation of aryl chlorides, a convenient method for the synthesis of new potential triazolic fungicides.Tetrahedron.2014;70:280–5. 22.Rossi RA.Photoinduced aromatic nucleophilic substitution reactions in synthetic organic photochemistry.In: Griesbeck AG, Mattay J, editors.Synthesis organic photochemistry.Dekker M: New York; 2005.p.495. 23.Rossi RA, Pierini AB, Santiago AN.Organic Reactions.In: Paquette LA, Bittman R, editors.Wiley: New York; 1999.p.1–127. 24.Farina V, Krishnamurthy V, Scott WJ.Stille reaction.Org React.1997;50:1–652. 25.Basso SM, Montañez JP, Santiago AN.Synthesis and evaluation of phytotoxicity of disugran analogues.Lett Org Chem.2008;5:633. 26.Miyaura NA.Palladium-catalyzed cross-coupling reactions of organoboron compounds.Chem Rev.1995;95:2457–83. 27.Hooshmand S, Heidari B, Sedghi R, Varma RS.Recent advances in the Suzuki-Miyaura cross-coupling reaction using efficient catalysts in ecofriendly media.Green Chem.2019;21:381–405. 28.Jacobus S, De Angelique R.WO 2012/117051.U.S.Patent 1–42.2012. 29.Rosenkranz HS, Matthews EJ, Klopman G.Relationships between cellular toxicity, the maximum tolerated dose, lipophilicity and electrophilicity.ATLA Altern Lab Anim.1992;20:549–62. 30.Kumar A, Sharma P, Kalal BL, Chandel LK.Synthesis and metal extraction behavior of pyridine and 1, 2, 4-triazole substituted calix [4] arenes.J Incl Phenom Macrocycl Chem.2010;68:369–79. 31.Rex JH, et al.27-A3: reference method for broth dilution antifungal suceptibility testing of yeats; approved standard, 3rd edn.CLSI.pp.1–13; 2008. 32.Rodríguez JA, Haun M.Cytotoxicity of trans-dehydrocrotonin from Croton cajucara (Euphorbiaceae) on V79 cells and rat hepatocytes.Planta Med.1999;65:522–6. 33.Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, Heer FT, De Beer TAP, Rempfer C, Bordoli L, Lepore R, Schwede T.SWISSMODEL: homology modelling of protein structures and complexes.Nucleic Acids Res.2018;46:296–303. |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|