Natural Products and Bioprospecting    2025, Vol. 15 Issue (1) : 1-1     DOI: 10.1007/s13659-024-00484-6
REVIEW |
Phytochemical fingerprinting of phytotoxins as a cutting-edge approach for unveiling nature’s secrets in forensic science
Nabil Zakaria1, Ashraf S. A. El-Sayed2, Mostafa G. Ali3,4
1. Phytochemistry lab, Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt;
2. Enzymology and Fungal Biotechnology Lab, Botany and Microbiology Department, Faculty of Science, Zagazig University, 44519, Zagazig, Egypt;
3. Botany and Microbiology Department, Faculty of Science, Benha University, Benha, 13518, Egypt;
4. Department of Food Science and Technology, The Ohio State University, Columbus, OH, USA
Download: PDF(2391 KB)   HTML ()  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  The integration of phytochemistry into forensic science has emerged as a groundbreaking frontier, providing unprecedented insights into nature's secrets through the precise application of phytochemical fingerprinting of phytotoxins as a cutting-edge approach. This study explores the dynamic intersection of phytochemistry and forensic science, highlighting how the unique phytochemical profiles of toxic plants and their secondary metabolites, serve as distinctive markers for forensic investigations. By utilizing advanced techniques such as Ultra-High-Performance Liquid Chromatography (UHPLC) and High-Resolution Mass Spectrometry (HRMS), the detection and quantification of plant-derived are made more accurate in forensic contexts. Real-world case studies are presented to demonstrate the critical role of plant toxins in forensic outcomes and legal proceedings. The challenges, potential, and future prospects of integrating phytochemical fingerprinting of plant toxins into forensic science were discussed. This review aims to illuminate phytochemical fingerprinting of plant toxins as a promising tool to enhance the precision and depth of forensic analyses, offering new insights into the complex stories embedded in plant toxins.
Keywords Forensic phytochemistry      Phytochemical fingerprinting      Plant toxins      Advanced chromatography     
Fund:The authors received no financial support for the research, authorship, and/or publication of this article.
Corresponding Authors: Mostafa G. ALI,E-mail:mostafa_5222@yahoo.com     E-mail: mostafa_5222@yahoo.com
Issue Date: 15 February 2025
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Nabil Zakaria
Ashraf S. A. El-Sayed
Mostafa G. Ali
Trendmd:   
Cite this article:   
Nabil Zakaria,Ashraf S. A. El-Sayed,Mostafa G. Ali. Phytochemical fingerprinting of phytotoxins as a cutting-edge approach for unveiling nature’s secrets in forensic science[J]. Natural Products and Bioprospecting, 2025, 15(1): 1-1.
URL:  
http://npb.kib.ac.cn/EN/10.1007/s13659-024-00484-6     OR     http://npb.kib.ac.cn/EN/Y2025/V15/I1/1
[1] Coyle HM. Forensic botany: principles and applications to criminal casework. Boca Raton: CRC Press; 2004.
[2] Hall DW, Byrd J. Forensic botany: a practical guide. Boca Raton: John Wiley & Sons; 2012.
[3] Bock JH, Norris DO. Forensic plant science. Amsterdam: Academic Press; 2015.
[4] Coyle HM, Lee C-L, Lin W-Y, Lee HC, Palmbach TM. Forensic botany: using plant evidence to aid in forensic death investigation. Croat Med J. 2005;46(4):606.
[5] Coyle HM, Ladd C, Palmbach T, Lee HC. The green revolution: botanical contributions to forensics and drug enforcement. Croat Med J. 2001;42:340–5.
[6] Bozorgi M, Amin GR, Ostad SN, Samadi N, Nazem E, Shekarchi M. Toxicological, chemical and antibacterial evaluation of squill vinegar, a useful product in Persian traditional medicine. Res J Pharmacogn. 2017;4:33–9.
[7] Sharrock S, Oldfield S, Wilson O. Plant conservation report 2014: a review of progress towards the global strategy for plant conservation 2011–2020. 2014.
[8] Oliveira M, Azevedo L, Ballard D, Branicki W, Amorim A. Using plants in forensics: state-of-the-art and prospects. Plant Sci. 2023;336: 111860.
[9] Oliveira M, Lackner M, Amorim A, Araujo R. Feasibility of mitochondrial single nucleotide polymorphisms to detect and identify Aspergillus fumigatus in clinical samples. Diagn Microbiol Infect Dis. 2014;80:53–8.
[10] Qu D, Qiao D-F, Chen X-C, Feng C-Q, Luo Q-Z, Tan X-H. Fatal poisoning by accidental ingestion of the “heartbreak grass” (Gelsemium elegans) verified by toxicological and medico-legal analyses. For Sci Int. 2021;321: 110745.
[11] Coyle HM, Lee HC, Palmbach TM. Forensic botany plants as evidence in criminal cases and as agents of bioterrorism. In: Coyle HM, editor. Forensic DNA applications. 2nd ed. Boca Raton: CRC Press; 2023.
[12] Bernhoft A, Siem H, Bjertness E, Meltzer M, Flaten T, Holmsen E. Bioactive compounds in plants–benefits and risks for man and animals. Nor Acad Sci Lett Oslo. 2010;4:13–4.
[13] Nugroho D, Chanthai S, Oh W-C, Benchawattananon R. Fluorophores-rich natural powder from selected medicinal plants for detection latent fingerprints and cyanide. Sci Prog. 2023;106:00368504231156217.
[14] Dubey NK, Dwivedy AK, Chaudhari AK, Das S. Common toxic plants and their forensic significance. In: Dubey NK, editor. Natural products and drug discovery. Amsterdam: Elsevier; 2018. p. 349–74.
[15] Anywar G. Historical Use of Toxic Plants. In: Anywar G, editor. Poisonous plants and phytochemicals in drug discovery. Ltd: John Wiley & Sons; 2020. p. 1–17.
[16] Raje SC, Bhagat DS, Nimbalkar RK, Shejul SK, Bumbrah GS, Sankhla MS. Contributions and current trends of forensic botany in crime scene investigation. Forensic Sci J. 2022;21:1–2.
[17] Hotti H, Rischer H. The killer of socrates: coniine and related alkaloids in the plant kingdom. Molecules. 2017;22:1962.
[18] Retief FP, Cilliers L. Poisoning during the Renaissance: The Medicis and the Borgias. 2000.
[19] Stegelmeier BL, James LF, Panter KE, Ralphs MH, Gardner DR, Molyneux RJ, et al. The pathogenesis and toxicokinetics of locoweed (Astragalus and Oxytropis spp.) poisoning in livestock. J Nat Toxins. 1999;8:35–45.
[20] Dodson C, Dunmire WW. Mountain wildflowers of the southern rockies: revealing their natural history. London: UNM Press; 2007.
[21] Norn S, Kruse PR. Hjerteglykosider: fra oldtiden over Witherings digitalis til endogen glykosider [Cardiac glycosides: from ancient history through Withering’s foxglove to endogeneous cardiac glycosides]. Dan Med Arbog. 2004;2004:119–32.
[22] Siritunga D, Sayre R. Engineering cyanogen synthesis and turnover in cassava (Manihot esculenta). Plant Mol Biol. 2004;56:661–9.
[23] Plants T. Ingestion of toxic plants by herbivores. J Range Manag. 45: 36–45.
[24] Strzelecki A, Pichon N, Gaulier JM, Amiel JB, Champy P, Clavel M. Acute toxic herbal intake in a suicide attempt and fatal refractory Ventricular Arrhythmia. Basic Clin Pharmacol Toxicol. 2010;107:698–9.
[25] Sinha M, Sahu M, Sallawad SS, Ahirwar B, Isukapatla AR. Characteristics and Identifying features of various natural toxins and poisonous plants used as weapons in forensic cases. Res J Pharm Technol. 2017;10:4237–41.
[26] Shedge R, Krishan K, Warrier V, Kanchan T. Postmortem changes. In: Shedge R, Krishan K, Warrier V, Kanchan T, editors. Postmortem changes. Treasure Island: StatPearls Publishing; 2019.
[27] Almulhim AM, Menezes RG. Evaluation of postmortem changes. Treasure Island: StatPearls Publishing; 2020.
[28] Nelson L, Shih R, Balick M. Handbook of poisonous and injurious plants. Boston: Springer, US; 2007.
[29] Kuete V. Physical, hematological, and histopathological signs of toxicity induced by African medicinal plants. In: Kuete V, editor. Toxicological survey of African medicinal plants. Amsterdam: Elsevier; 2014. p. 635–57.
[30] Dolinak D, Matshes E, Lew EO. Forensic pathology: principles and practice. Amsterdam: Elsevier; 2005.
[31] Matsuyama S, Nishi K. Genus identification of toxic plant by real-time PCR. Int J Legal Med. 2011;125:211–7.
[32] Weedn VW. Bases of forensic pathology expert testimony with emphasis on Iowa v Tyler. Acad Forensic Pathol. 2021;11:185–95.
[33] Gaillard Y, Pepin G. Poisoning by plant material: review of human cases and analytical determination of main toxins by high-performance liquid chromatography–(tandem) mass spectrometry. J Chromatogr B Biomed Sci App. 1999;733:181–229.
[34] Patil A, Paikrao HM, Patil S. The chemistry and biology of the plant poisons and their forensic significance. In: Patil A, editor. Studies in natural products chemistry. Amsterdam: Elsevier; 2023. p. 255–321.
[35] Tahir F, Ali E, Hassan SA, Bhat ZF, Walayat N, Nawaz A, et al. Cyanogenic glucosides in plant-based foods: occurrence, detection methods, and detoxification strategies—a comprehensive review. Microchem J. 2024;199: 110065.
[36] Wink M, Van Wyk B-E. Mind-altering and poisonous plants of the world. New York: Timber Press; 2008.
[37] Benowitz NL. Nicotine safety and toxicity. Oxford: Oxford University Press; 1998.
[38] Li J, Zhang F, Gu Y, Ye Y, Li L, Liu M, et al. Forensic aspects about fatal morphine intoxication of an unusual body packer: case report and literature review. Forensic Sci Int Rep. 2021;3: 100207.
[39] Refahy LA-G. Study on flavonoids and triterpenoids content of some Euphorbiaceae plants. J Life Sci. 2011;5:100–7.
[40] Dickers KJ, Bradberry SM, Rice P, Griffiths GD, Vale JA. Abrin poisoning. Toxicol Rev. 2003;22:137–42.
[41] Holstege CP. Criminal poisoning: clinical and forensic perspectives. New York: Jones & Bartlett Publishers; 2010.
[42] Sandvig K, Olsnes S, Pihl A. Kinetics of binding of the toxic lectins abrin and ricin to surface receptors of human cells. J Biol Chem. 1976;251:3977–84.
[43] Kim J-Y, Park S-C, Hwang I, Cheong H, Nah J-W, Hahm K-S, et al. Protease inhibitors from plants with antimicrobial activity. Int J Mol Sci. 2009;10:2860–72.
[44] Downs JW, Wills BK. Phenol toxicity. 2019.
[45] Maugeri A, Lombardo GE, Cirmi S, Süntar I, Barreca D, Laganà G, et al. Pharmacology and toxicology of tannins. Arch Toxicol. 2022;96:1257–77.
[46] Murray AR, Kisin E, Castranova V, Kommineni C, Gunther MR, Shvedova AA. Phenol-induced in vivo oxidative stress in skin: evidence for enhanced free radical generation, thiol oxidation, and antioxidant depletion. Chem Res Toxicol. 2007;20:1769–77.
[47] Toschi A, Piva A, Grilli E. Phenol-rich botanicals modulate oxidative stress and epithelial integrity in intestinal epithelial cells. Animals. 2022;12:2188.
[48] Kumar R, Vaithiyanathan S. Occurrence, nutritional significance and effect on animal productivity of tannins in tree leaves. Anim Feed Sci Technol. 1990;30:21–38.
[49] Kumar R, Horigome T. Fractionation, characterization and protein-precipitating capacity of the condensed tannins from Robinia pseudoacacia L. leaves. J Agric Food Chem. 1986;34:487–9.
[50] Theodossiou TA, Hothersall JS, De Witte PA, Pantos A, Agostinis P. The multifaceted photocytotoxic profile of hypericin. Mol Pharm. 2009;6:1775–89.
[51] Shukla V, Asthana S, Gupta P, Dwivedi PD, Tripathi A, Das M. toxicity of naturally occurring anthraquinones. In: Shukla V, editor. advances in molecular toxicology. Amsteradam: Elsevier; 2017. p. 1–50.
[52] Abegg VF, Panajatovic MV, Mancuso RV, Allard JA, Duthaler U, Odermatt A, et al. Mechanisms of hepatocellular toxicity associated with the components of St. John’s Wort extract hypericin and hyperforin in HepG2 and HepaRG cells. Toxicol Lett. 2024;393:1–13.
[53] Olsen RW. Picrotoxin-like channel blockers of GABAA receptors. Proc Natl Acad Sci. 2006;103:6081–2.
[54] Pressly B, Vasylieva N, Barnych B, Singh V, Singh L, Bruun DA, et al. Comparison of the toxicokinetics of the convulsants picrotoxinin and tetramethylenedisulfotetramine (TETS) in mice. Arch Toxicol. 2020;94:1995–2007.
[55] Ramos A, Rivero R, Visozo A, Piloto J, García A. Parthenin, a sesquiterpene lactone of Parthenium hysterophorus L. is a high toxicity clastogen. Mutat Res Toxicol Environ Mutagen. 2002;514:19–27.
[56] Batish DR, Singh HP, Kohli RK, Kaur S, Saxena DB, Yadav S. Assessment of phytotoxicity of parthenin. Z Für Naturforschung C. 2007;62:367–72.
[57] Hussain A, Khan AA, Ali M, Zamani GY, Iqbal Z, Ullah Q, et al. In-vitro and in-vivo assessment of toxic effects of Parthenium hysterophorus leaves extract. J Chil Chem Soc. 2022;67:5484–9.
[58] Śmiarowska M, Białecka M, Machoy-Mokrzyńska A. Cannabis and cannabinoids: pharmacology and therapeutic potential. Neurol Neurochir Pol. 2022;56:4–13.
[59] Alves P, Amaral C, Teixeira N, Correia-da-Silva G. Cannabis sativa: Much more beyond Δ9-tetrahydrocannabinol. Pharmacol Res. 2020;157: 104822.
[60] Sarne Y, Mechoulam R. Cannabinoids: between neuroprotection and neurotoxicity. Curr Drug Targets CNS Neurol Disord. 2005;4:677–84.
[61] Mohamed NZ, Shaban L, Safan S, El-Sayed ASA. Physiological and metabolic traits of Taxol biosynthesis of endophytic fungi inhabiting plants: plant-microbial crosstalk, and epigenetic regulators. Microbiol Res. 2023;272: 127385.
[62] Mohamed NZ, Shaaban L, Safan S, El-Sayed ASA. Phytochemical and metabolic profiling of the different Podocarpus species in Egypt: Potential antimicrobial and antiproliferative activities. Heliyon. 2023;9:54.
[63] ElSohly MA, Stanford DF, Murphy TP. Chemical fingerprinting of Cannabis as a means of source identification. In: Stanford DF, editor. Marijuana and the cannabinoids. Totowa: Humana Press; 2007. p. 51–66.
[64] Rivera D, Mozayani A, Obi E, Drake JM. The structural complexities of Cannabis sativa L. and profiling techniques for geographic source determination. J Forensic Res. 2019;10:1000443.
[65] Weyermann C, Roux C, Champod C. Initial results on the composition of fingerprints and its evolution as a function of time by GC/MS analysis. J Forensic Sci. 2011;56:102–8.
[66] Yang L, Wen K-S, Ruan X, Zhao Y-X, Wei F, Wang Q. Response of plant secondary metabolites to environmental factors. Molecules. 2018;23:762.
[67] Smith I. Chromatography. Amsterdam: Elsevier; 2013.
[68] Coskun O. Separation techniques: chromatography. North Clin Istanb. 2016;3:156.
[69] Mukadam M, Shaikh MFS, Anam MS, Ahmed K, Mandlekar MBF. Gas chromatography of volatile oil. Int J Pharm Res Appl. 2021;6:399–406.
[70] Fanali S, Haddad PR, Poole C, Riekkola M-L. Liquid chromatography: applications. Amsterdam: Elsevier; 2017.
[71] Duckworth HE, Barber RC, Venkatasubramanian VS. Mass spectroscopy. 2nd ed. Cambridge: Cambridge University Press; 1986.
[72] Ahuja V, Singh A, Paul D, Dasgupta D, Urajová P, Ghosh S, et al. Recent Advances in the detection of food toxins using mass spectrometry. Chem Res Toxicol. 2023;36:1834–63.
[73] Al-Rubaye AF, Hameed IH, Kadhim MJ. A review: uses of gas chromatography-mass spectrometry (GC-MS) technique for analysis of bioactive natural compounds of some plants. Int J Toxicol Pharmacol Res. 2017;9:81–5.
[74] Pitt JJ. Principles and applications of liquid chromatography-mass spectrometry in clinical biochemistry. Clin Biochem Rev. 2009;30:19–34.
[75] Rizzo S, Celano R, Piccinelli AL, Serio S, Russo M, Rastrelli L. An analytical platform for the screening and identification of pyrrolizidine alkaloids in food matrices with high risk of contamination. Food Chem. 2023;406: 135058.
[76] Kalb SR, Schieltz DM, Becher F, Astot C, Fredriksson S-Å, Barr JR. Recommended mass spectrometry-based strategies to identify ricin-containing samples. Toxins. 2015;7:4881–94.
[77] Liang X, Christensen JH, Nielsen NJ. Enhancing the power of liquid chromatography–mass spectrometry for chemical fingerprinting of phytotoxins in the environment. J Chromatogr A. 2021;1642: 462027.
[78] Bovey FA, Mirau PA, Gutowsky HS. Nuclear magnetic resonance spectroscopy. Amsterdam: Elsevier; 1988.
[79] Alkefai NH, Mir SR, Amin S, Ahamad J, Munjal K, Gauttam VK. NMR in analysis of food toxins. In: Alkefai NH, editor. Analysis of naturally occurring food toxins of plant origin. Boca Raton: CRC Press; 2022.
[80] Holmes E, Tang H, Wang Y, Seger C. The assessment of plant metabolite profiles by NMR-based methodologies. Planta Med. 2006;72:771–85.
[81] Rosengren KJ, Daly NL, Craik DJ. NMR of peptide toxins. In: Rosengren KJ, editor. Annual reports on NMR spectroscopy. Amsterdam: Academic Press; 2009. p. 89–147.
[82] Romagnoli S, Ugolini R, Fogolari F, Schaller G, Urech K, Giannattasio M, et al. NMR structural determination of viscotoxin A3 from Viscum album L. Biochem J. 2000;350(Pt 2):569.
[83] Sakamoto S, Putalun W, Vimolmangkang S, Phoolcharoen W, Shoyama Y, Tanaka H, et al. Enzyme-linked immunosorbent assay for the quantitative/qualitative analysis of plant secondary metabolites. J Nat Med. 2018;72:32–42.
[84] Moawed A, Naguib DM. Medicolegal responsibility in acute poisoning cases: highlight on the related Egyptian laws. Egypt Soc Clin Toxicol J. 2023;11:1–9.
[85] Forbes SL, Perrault KA, Comstock JL. Microscopic post-mortem changes: the chemistry of decomposition. In: Forbes SL, editor. Taphonomy of human remains: forensic analysis of the dead and the depositional environment. Hoboken: John Wiley & Sons, Ltd; 2017.
[86] Szeremeta M, Pietrowska K, Niemcunowicz-Janica A, Kretowski A, Ciborowski M. Applications of metabolomics in forensic toxicology and forensic medicine. Int J Mol Sci. 2021;22:3010.
[87] Skopp G. Preanalytic aspects in postmortem toxicology. Forensic Sci Int. 2004;142:75–100.
[88] der Rogowska-van Molen MA, Berasategui-Lopez A, Coolen S, Jansen RS, Welte CU. Microbial degradation of plant toxins. Environ Microbiol. 2023;25:2988–3010.
[89] Uekusa K, Hayashida M, Ohno Y. Forensic toxicological analyses of drugs in tissues in formalin solutions and in fixatives. Forensic Sci Int. 2015;249:165–72.
[90] Kot-Wasik A, Dabrowska D, Namiesnik J. The Importance of degradation in the fate of selected organic compounds in the environment. Part I. General considerations. Pol J Environ Stud. 2004;13:15.
[91] Mohammed AT, Abdelfattah-Hassan A, Abdo S, Ali MIM, Wagih E. Estimation of the time since death based on the post-mortem histopathological changes in a rat brain: an observational study. J Adv Vet Res. 2023;13:526–30.
[92] Yu K, Wu H, Shen C, Li H, Wei X, Liu R, et al. Identification of antemortem and postmortem fractures in a complex environment by FTIR spectroscopy based on a rabbit tibial fracture self-control model. Int J Legal Med. 2021;135:2385–94.
[93] Ma Y, Fei X, Li J, Liu Y, Wei A. Effects of location, climate, soil conditions and plant species on levels of potentially toxic elements in Chinese Prickly Ash pericarps from the main cultivation regions in China. Chemosphere. 2020;244: 125501.
[94] Günthardt BF, Hollender J, Hungerbühler K, Scheringer M, Bucheli TD. Comprehensive toxic plants–phytotoxins database and its application in assessing aquatic micropollution potential. J Agric Food Chem. 2018;66:7577–88.
[95] van der Fels-Klerx HJ, Olesen JE, Naustvoll L-J, Friocourt Y, Mengelers MJB, Christensen JH. Climate change impacts on natural toxins in food production systems, exemplified by deoxynivalenol in wheat and diarrhetic shellfish toxins. Food Addit Contam Part A. 2012;29:1647–59.
[96] Moraghan JT, Mascagni HJ Jr. Environmental and soil factors affecting micronutrient deficiencies and toxicities. In: Moraghan JT, editor. micronutrients in agriculture. Hoboken: John Wiley & Sons, Ltd; 1991.
[97] Anic V, Hinojosa LF, Díaz-Forester J, Bustamante E, de la Fuente LM, Casale JF, et al. influence of soil chemical variables and altitude on the distribution of high-alpine plants: the case of the Andes of central Chile. Arct Antarct Alp Res. 2010;42:152–63.
[98] Agrawal AA, Petschenka G, Bingham RA, Weber MG, Rasmann S. Toxic cardenolides: chemical ecology and coevolution of specialized plant–herbivore interactions. New Phytol. 2012;194:28–45.
[99] Jarzomski CM, Stamp NE, Bowers MD. Effects of plant phenology, nutrients and herbivory on growth and defensive chemistry of plantain. Plantago lanceolata Oikos. 2000;88:371–9.
[100] Vaclavik L, Krynitsky AJ, Rader JI. Targeted analysis of multiple pharmaceuticals, plant toxins and other secondary metabolites in herbal dietary supplements by ultra-high performance liquid chromatography–quadrupole-orbital ion trap mass spectrometry. Anal Chim Acta. 2014;810:45–60.
[101] Ahmed F, Eticha T, Hymete A, Ashenef A, Ahmed F, Eticha T, et al. Principles and applications of ultra-high-performance liquid chromatography. In: Ahmed F, editor., et al., High performance liquid chromatography—recent advances and applications. New York: IntechOpen; 2023.
[102] Tanna N, Plumb RS, Molloy BJ, Rainville PD, Wilson ID. Enhanced chromatographic efficiency obtained with vacuum jacketed columns facilitates the rapid UHPLC/MS/MS-based analysis of fasiglifam in rat plasma. Talanta. 2023;254: 124089.
[103] Fekete S, Schappler J, Veuthey J-L, Guillarme D. Current and future trends in UHPLC. TrAC Trends Anal Chem. 2014;63:2–13.
[104] Wu H, Guo J, Chen S, Liu X, Zhou Y, Zhang X, et al. Recent developments in qualitative and quantitative analysis of phytochemical constituents and their metabolites using liquid chromatography–mass spectrometry. J Pharm Biomed Anal. 2013;72:267–91.
[105] Cielecka-Piontek J, Zalewski P, Jelińska A, Garbacki P. UHPLC: the greening face of liquid chromatography. Chromatographia. 2013;76:1429–37.
[106] Nováková L, Svoboda P, Pavlík J. Ultra-high performance liquid chromatography. In: Nováková L, editor. Liquid chromatography. 2nd ed. Boston: Elsevier; 2017. p. 719–69.
[107] Kaplitz AS, Kresge GA, Selover B, Horvat L, Franklin EG, Godinho JM, et al. High-throughput and ultrafast liquid chromatography. Anal Chem. 2020;92:67–84.
[108] D’Atri V, Fekete S, Clarke A, Veuthey J-L, Guillarme D. Recent advances in chromatography for pharmaceutical analysis. Anal Chem. 2019;91:210–39.
[109] Fabel S. Method Transfer between HPLC and UHPLC. In: Fabel S, editor. Chromatographic methods development. New Delhi: Jenny Stanford Publishing; 2019.
[110] Alvarez-Rivera G, Ballesteros-Vivas D, Parada-Alfonso F, Ibañez E, Cifuentes A. Recent applications of high-resolution mass spectrometry for the characterization of plant natural products. TrAC Trends Anal Chem. 2019;112:87–101.
[111] Arrebola-Liébanas FJ, Romero-González R, Garrido FA. RMS: fundamentals and basic concepts. In: Arrebola-Liébanas FJ, editor. Applications in high resolution mass spectrometry. Boston: Elsevier; 2017. p. 1–14.
[112] Geer Wallace MA, McCord JP. High-resolution mass spectrometry. In: Geer Wallace MA, editor. Breathborne biomarkers and the human volatilome. 2nd ed. Boston: Elsevier; 2020. p. 253–70.
[113] Rathahao-Paris E, Alves S, Junot C, Tabet J-C. High resolution mass spectrometry for structural identification of metabolites in metabolomics. Metabolomics. 2015;12:10.
[114] Junot C, Fenaille F, Colsch B, Bécher F. High resolution mass spectrometry based techniques at the crossroads of metabolic pathways. Mass Spectrom Rev. 2014;33:471–500.
[115] You Y, Proctor RM, Guo K, Li X, Xue E, Guan F, et al. Use of high resolution/accurate mass full scan/data-dependent acquisition for targeted/non-targeted screening in equine doping control. Anal Methods. 2021;13:1565–75.
[116] Celma A, Ahrens L, Gago-Ferrero P, Hernández F, López F, Lundqvist J, et al. The relevant role of ion mobility separation in LC-HRMS based screening strategies for contaminants of emerging concern in the aquatic environment. Chemosphere. 2021;280: 130799.
[117] López-Ruiz R, Maldonado-Reina AJ, Marín-Sáez J, Romero-González R, Martínez-Vidal JL, Garrido FA. Unravelling plant protection product analysis: use of chromatography techniques (GC and LC) and high resolution mass spectrometry. Trends Environ Anal Chem. 2023;37: e00191.
[118] Lai Y-H, Wang Y-S. Advances in high-resolution mass spectrometry techniques for analysis of high mass-to-charge ions. Mass Spectrom Rev. 2023;42:2426–45.
[119] Steenkamp PA, van Heerden FR, van Wyk B-E. Accidental fatal poisoning by Nicotiana glauca: identification of anabasine by high performance liquid chromatography/photodiode array/mass spectrometry. Forensic Sci Int. 2002;127:208–17.
[120] Vetter J. Poison hemlock (Conium maculatum L.). Food Chem Toxicol. 2004;42:1373–82.
[121] Wink M. Mode of action and toxicology of plant toxins and poisonous plants. Mitt Julius Kühn-Inst. 2009;421:93–112.
[122] Salehi B, Sharopov F, Boyunegmez Tumer T, Ozleyen A, Rodríguez-Pérez C, Ezzat MS, et al. Symphytum species: a comprehensive review on chemical composition, food applications and phytopharmacology. Molecules. 2019;24:2272.
[123] Berendonk C, Cerff D, Hünting K, Wiedenfeld H, Becerra J, Kuschak M. Pyrrolizidine alkaloid level in Senecio jacobaea and Senecio erraticus-the effect of plant organ and forage conservation. Proc 23rd Gen Meet Eur Grassld Fed Grassl Chang World Kiel Ger. 2010;15:669–71.
[124] Broch-Due AI, Aasen AJ. Alkaloids of Anchusa officinalis L. identification of pyrrolizidine alkaloid lycopsamine. Acta Chem Scand Ser B. 1980;34:75–7.
[125] Razinger G, Kozelj G, Gorjup V, Grenc D, Brvar M. Accidental poisoning with autumn crocus (Colchicum autumnale): a case series. Clin Toxicol. 2021;59:493–9.
[126] Dannhardt G, Steindl L. Alkaloids of Lolium temulentum: isolation, identification and pharmacological activity. Planta Med. 2007;51:212–4.
[127] Wagner HK, Wolff PM. New natural products and plant drugs with pharmacological, biological or therapeutical activity: proceedings of the first international congress on medicinal plant research, section A, held at the University of Munich, Germany, September 6–10, 1976. Springer Science & Business Media; 2012.
[128] Gavilan J, Mennickent D, Ramirez-Molina O, Triviño S, Perez C, Silva-Grecchi T, et al. 17 Oxo sparteine and lupanine, obtained from Cytisus scoparius, exert a neuroprotection against soluble oligomers of amyloid-β Toxicity by nicotinic acetylcholine receptors. J Alzheimers Dis. 2019;67:343–56.
[129] Petruczynik A, Wróblewski K, Misiurek J, Plech T, Szalast K, Wojtanowski K, et al. Determination of cytisine and N-methylcytisine from selected plant extracts by high-performance liquid chromatography and comparison of their cytotoxic activity. Toxins. 2020;12:557.
[130] Cely-Veloza W, Kato MJ, Coy-Barrera E. Quinolizidine-type alkaloids: chemodiversity, occurrence, and bioactivity. ACS Omega. 2023;8:27862–93.
[131] Vavrečková C, Gawlik I, Müller K. Benzophenanthridine alkaloids of Chelidonium majus; II. potent inhibitory action against the growth of human keratinocytes. Planta Med. 2007;62:491–4.
[132] Dalvi RR. Sanguinarine: its potential, as a liver toxic alkaloid present in the seeds of Argemone mexicana. Experientia. 1985;41:77–8.
[133] Günaydın YK, Dündar ZD, Çekmen B, Akıllı NB, Köylü R, Cander B. Intoxication due to Papaver rhoeas (Corn Poppy): five case reports. Case Rep Med. 2015;2015: 321360.
[134] Sun S, Wei Y, Cao Y, Deng B. Simultaneous electrochemiluminescence determination of galanthamine, homolycorine, lycorenine, and tazettine in Lycoris radiata by capillary electrophoresis with ultrasonic-assisted extraction. J Chromatogr B. 2017;1055–1056:15–9.
[135] Zamfirache IIB. Contributions to the chemical study of some Papaveraceae species capsules n. ii. Glaucium flavum, Glaucium corniculatum and Chelidonium majus. Analele Ştiințifice Ale Univ Al Cuza Din Iaşi Genet Şi Biol Mol Ser Nouă Secțiunea II A. 2004;5:191.
[136] Ubeda A, Montesinos C, Payá M, Terencio C, Alcaraz MJ, Halliwell B. Antioxidant action of benzylisoquinoline alkaloids. Free Radic Res Commun. 1993;18:167–75.
[137] Nawrot R, Wolun-Cholewa M, Bialas W, Wyrzykowska D, Balcerkiewicz S, Gozdzicka-Jozefiak A. Cytotoxic activity of proteins isolated from extracts of Corydalis cava tubers in human cervical carcinoma HeLa cells. BMC Complement Altern Med. 2010;10:78.
[138] Xiang M-L, Hu B-Y, Qi Z-H, Wang X-N, Xie T-Z, Wang Z-J, et al. Chemistry and bioactivities of natural steroidal alkaloids. Nat Prod Bioprospecting. 2022;12:23.
[139] Anwar M, Turner M, Farrell N, Zomlefer WB, McDougal OM, Morgan BW. Hikers poisoned: veratrum steroidal alkaloid toxicity following ingestion of foraged Veratrum parviflorum. Clin Toxicol. 2018;56:841–5.
[140] Atta-ur-Rahman A, Akhtar MN, Choudhary MI, Tsuda Y, Sener B, Khalid A, et al. New steroidal alkaloids from Fritillaria imperialis and their cholinesterase inhibiting activities. Chem Pharm Bull. 2002;50:1013–6.
[141] Rajput H. Effects of Atropa belladonna as an anti-cholinergic. Nat Prod Chem Res. 2013;1:1000104.
[142] Karch SB. Introduction to the forensic pathology of cocaine. Am J For Med Pathol. 1991;12:126.
[143] Chan TY, Tomlinson B, Tse LK, Chan JC, Chan WW, Critchley JA. Aconitine poisoning due to Chinese herbal medicines: a review. Vet Hum Toxicol. 1994;36:452–5.
[144] Ameri A. The effects of Aconitum alkaloids on the central nervous system. Prog Neurobiol. 1998;56:211–35.
[145] Yin T, Cai L, Ding Z. A systematic review on the chemical constituents of the genus Consolida (Ranunculaceae) and their biological activities. RSC Adv. 2020;10:35072–89.
[146] Olsen JD, Manners GD. Toxicology of diterpenoid alkaloids in rangeland larkspur (Delphinium spp.). Toxic Plant Orig. 1989;1:291–326.
[147] Brown M, Vale W. Central nervous system effects of hypothalamic peptides. Endocrinology. 1975;96:1333–6.
[148] Markert A, Steffan N, Ploss K, Hellwig S, Steiner U, Drewke C, et al. Biosynthesis and accumulation of ergoline alkaloids in a mutualistic association between Ipomoea asarifolia (Convolvulaceae) and a Clavicipitalean Fungus. Plant Physiol. 2008;147:296–305.
[149] Dhyani P, Quispe C, Sharma E, Bahukhandi A, Sati P, Attri DC, et al. Anticancer potential of alkaloids: a key emphasis to colchicine, vinblastine, vincristine, vindesine, vinorelbine and vincamine. Cancer Cell Int. 2022;22:206.
[150] Colodel EM, Gardner DR, Zlotowski P, Driemeier D. Identification of swainsonine as a glycoside inhibitor responsible for Sida carpinifolia poisoning. Vet Hum Toxicol. 2002;44:177–8.
[151] Barceloux DG. Potatoes, tomatoes, and solanine toxicity (Solanum tuberosum L., Solanum lycopersicum L.). Dis Mon. 2009;55:391–402.
[152] Leonard JB, Anderson B, Klein-Schwartz W. Does getting high hurt? Characterization of cases of LSD and psilocybin-containing mushroom exposures to national poison centers between 2000 and 2016. J Psychopharmacol. 2018;32:1286–94.
[153] Toennes SW, Harder S, Schramm M, Niess C, Kauert GF. Pharmacokinetics of cathinone, cathine and norephedrine after the chewing of khat leaves. Br J Clin Pharmacol. 2003;56:125–30.
[154] Ramadan LB, Zwawi A, Almaghour H. Toxicity and antioxidant of Arum Cyrenaicum hurby. Egypt J Forensic Sci Appl Toxicol. 2012;12:31–48.
[155] Arrázola G, Grane N, Dicenta F. Quantification of cyanogenic compounds, amygdalin, prunasin, and hydrocyanic acid in almonds (Prunus dulcis Miller) for industrial uses. Rev Colomb Cienc Hortícolas. 2021;15.
[156] Cooke RD, de la Cruz EM. The changes in cyanide content of cassava (Manihot esculenta crantz) tissues during plant development. J Sci Food Agric. 1982;33:269–75.
[157] Nartey F. Studies on cassava, Manihot utilissima Pohl—I Cyanogenesis: the biosynthesis of linamarin and lotaustralin in etiolated seedlings. Phytochemistry. 1968;7:1307–12.
[158] Curto G, Dallavalle E, Nicola GRD, Lazzeri L. Evaluation of the activity of dhurrin and sorghum towards Meloidogyne incognita. 2012. https://doi.org/10.1163/156854112X627291.
[159] Senthilkumaran S, Meenakshisundaram R, Thirumalaikolundusubramanian P. Plant Toxins and the Heart. In: Heart and toxins. Boston: Academic Press; 2015. p. 151–74.
[160] Langford SD, Boor PJ. Oleander toxicity: an examination of human and animal toxic exposures. Toxicology. 1996;109:1–13.
[161] Shivkar YM, Kumar VL. Anthelmintic activity of latex of Calotropis procera. Pharm Biol. 2003;41:263–5.
[162] Kumar R. Anti-nutritional factors, the potential risks of toxicity and methods to alleviate them. Legume trees fodd trees protein source livest FAO. Anim Prod Health Pap. 1992;102:145–60.
[163] Hixson-Wallace J. Digoxin toxicity: a review. US Pharm. 2006;2:28–36.
[164] Morimoto M, Tatsumi K, Yuui K, Terazawa I, Kudo R, Kasuda S. Convallatoxin, the primary cardiac glycoside in lily of the valley (Convallaria majalis), induces tissue factor expression in endothelial cells. Vet Med Sci. 2021;7:2440–4.
[165] Üçüncü O, Baltaci C, Akar Z, Duzgun A, Cuce M, Kandemir A. Biological activities and phytochemical screening of ethanol extracts from Adonis paryadrica (Ranunculaceae). Farmacia. 2020;68:1068.
[166] Cuny E. Bioactive Ingredients of Helleborus niger L (Christmas Rose): the renaissance of an old medicinal herb—a review. Nat Prod Commun. 2023;18:1934578X231201053.
[167] Adams M, Berset C, Kessler M, Hamburger M. Medicinal herbs for the treatment of rheumatic disorders—a survey of European herbals from the 16th and 17th century. J Ethnopharmacol. 2009;121:343–59.
[168] Guo X, Mei N. Aloe vera: a review of toxicity and adverse clinical effects. J Environ Sci Health Part C. 2016;34:77–96.
[169] Liu Y, An Z, He Y. The traditional uses, phytochemistry, pharmacology and toxicology of Bergenia purparescens: a review comments and suggestions. Heliyon. 2023;9:e22249.
[170] Boo YC. Arbutin as a skin depigmenting agent with antimelanogenic and antioxidant properties. Antioxidants. 2021;10:1129.
[171] Weiler EW, Zenk MH. Radioimmunoassay for the determination of digoxin and related compounds in Digitalis lanata. Phytochemistry. 1976;15:1537–45.
[172] Apel L, Kammerer DR, Stintzing FC, Spring O. Comparative metabolite profiling of triterpenoid saponins and flavonoids in flower color mutations of Primula veris L. Int J Mol Sci. 2017;18:153.
[173] Jia Z, Koike K, Nikaido T. Major triterpenoid saponins from Saponaria officinalis. J Nat Prod. 1998;61:1368–73.
[174] Idris S, Mishra A, Khushtar M. Phytochemical, ethanomedicinal and pharmacological applications of escin from Aesculus hippocastanum L. towards future medicine. J Basic Clin Physiol Pharmacol. 2020;31:5.
[175] Wilson CR, Sauer J-M, Hooser SB. Taxines: a review of the mechanism and toxicity of yew (Taxus spp.) alkaloids. Toxicon. 2001;39:175–85.
[176] Kleinwächter M, Schnug E, Selmar D. The Glucosinolate-myrosinase system in nasturtium (Tropaeolum majus L): variability of biochemical parameters and screening for clones feasible for pharmaceutical utilization. J Agric Food Chem. 2008;56:11165–70.
[177] Majak W. Review of toxic glycosides in rangeland and pasture forages. Rangel Ecol Manag Range Manag Arch. 2001;54:494–8.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed