ORIGINAL ARTICLES |
|
|
|
|
|
Revealing the effect of sea buckthorn oil, fish oil and structured lipid on intestinal microbiota, colonic short chain fatty acid composition and serum lipid profiles in vivo |
Ankang Song1, Yanbo Li1, Wei Wang1, Yueqi Hu2, Junjie Xu2, Zhixin Xu1, Li Zhou2, Jikai Liu2 |
1. College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi, 830000, People's Republic of China; 2. National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan, 430074, People's Republic of China |
|
|
Abstract In this study, the effects of sea buckthorn oil (SBO), fish oil (FO) and an enzymatically synthesized structured lipid (SL) on serum, short-chain fatty acids (SCFAs) and intestinal microbiota in Sprague-Dawley (SD) rats were investigated. The results demonstrated that FO, SBO, and SL effectively reduced the levels of high-density lipoprotein cholesterol and low-density lipoprotein cholesterol in the serum of SD rats. SBO increased serum triglyceride levels, while FO elevated total cholesterol levels. Furthermore, all three dietary lipids decreased short-chain fatty acid production and enhanced intestinal microbiota diversity. FO increased the abundance of intestinal microbiota including Romboutsia, Lactobacillus, Escherichia-Shigella, and Lachnospiraceae_NK4A136_group. Conversely, all three dietary lipids reduced the abundance of Klebsiella and Blautia. These findings provide a foundation for understanding the functionality of SBO and FO as well as their potential application in synthesizing novel SLs to regulate intestinal microbiota.
|
Keywords
Dietary lipids
Serum lipid profile
Short chain fatty acid
Intestinal microbiota
|
Fund:This work was supported by the Key Research and Development Project of Xinjiang Uygur Autonomous Region (2022B02005-2-3), the Natural Science Foundation of Hubei Province (2022CFB458), the Key Research and Development Project of Xinjiang Uygur Autonomous Region (2022B02018-3), the Key Research and Development Project of Xinjiang Uygur Autonomous Region (2022B02045-3), and the Innovation Project of Xinjiang Uygur Autonomous Region University Students (S202310758031). |
Corresponding Authors:
Wei Wang,E-mail:ww2shz@163.com;Li Zhou,E-mail:zhou2018@scuec.edu.cn;Jikai Liu,E-mail:liujikai@mail.scuec.edu.cn
E-mail: ww2shz@163.com;zhou2018@scuec.edu.cn;liujikai@mail.scuec.edu.cn
|
Issue Date: 14 October 2024
|
|
|
[1] Wang J, Chen X, Wang H, Xiao S, Wang B, Cai Y. Effects of catalpa seed oil and pomegranate seed oil on body weight and intestinal flora in mice. Food Sci Technol. 2022;42: e85622. https://doi.org/10.1590/fst.85622. [2] Xu Y, Zhu W, Ge Q, Zhou X. Effect of different types of oil intake on the blood index and the intestinal flora of rats. AMB Express. 2022;12(1):49. https://doi.org/10.1186/s13568-022-01387-w. [3] Czaplicki S, Ogrodowska D, Zadernowski R, Konopka I. Effect of sea-buckthorn (Hippophaë rhamnoides L.) pulp oil consumption on fatty acids and vitamin A and E accumulation in adipose tissue and liver of rats. Plant Foods Human Nutr. 2017;72(2):198-204. https://doi.org/10.1007/s11130-017-0610-9. [4] Zielińska A, Nowak I. Abundance of active ingredients in sea-buckthorn oil. Lipids Health Dis. 2017;16(1):1-11. https://doi.org/10.1186/s12944-017-0469-7. [5] Olas B. The beneficial health aspects of sea buckthorn (Elaeagnus rhamnoides (L.) A. Nelson) oil. J Ethnopharmacol. 2018. https://doi.org/10.1016/j.jep.2017.11.022. [6] Koskovac M, Cupara S, Kipic M, Barjaktarevic A, Milovanovic O, Kojicic K, Markovic M. Sea buckthorn oil-a valuable source for cosmeceuticals. Cosmetics. 2017. https://doi.org/10.3390/cosmetics4040040. [7] Zhang J, Zhou H, He S, Zhang X, Ling Y, Li X, Zhang H, Hou D. The immunoenhancement effects of sea buckthorn pulp oil in cyclophosphamide-induced immunosuppressed mice. Food Funct. 2021;12(17):7954-63. https://doi.org/10.1039/d1fo01257f. [8] Saini RK, Keum YS. Omega-3 and omega-6 polyunsaturated fatty acids: dietary sources, metabolism, and significance-a review. Life Sci. 2018. https://doi.org/10.1016/j.lfs.2018.04.049. [9] Innes JK, Calder PC. Marine Omega-3 (N-3) Fatty Acids for Cardiovascular Health: an update for 2020. Int J Mol Sci. 2020. https://doi.org/10.3390/ijms21041362. [10] Veshkini A, Ceciliani F, Bonnet M, Hammon HM. Effect of essential fatty acids and conjugated linoleic acid on the adaptive physiology of dairy cows during the transition period. Animal. 2023;17:100757. https://doi.org/10.1016/j.animal.2023.100757. [11] Ayeloja AA, Jimoh WA, Oyewole TV. Nutritional quality of fish oil extracted from selected marine fish species. Food Humanity. 2024;2:10012. https://doi.org/10.1016/j.foohum.2023.100212. [12] Iizuka Y, Hirako S, Kim H, Wada N, Ohsaki Y, Yanagisawa N. Fish oil-derived n-3 polyunsaturated fatty acids downregulate aquaporin 9 protein expression of liver and white adipose tissues in diabetic KK mice and 3T3-L1 adipocytes. J Nutr Biochem. 2024;124: 109514. https://doi.org/10.1016/j.jnutbio.2023.109514. [13] Moreno F, Méndez L, Raner A, Miralles-Perez B, Romeu M, Ramos-Romero S, Torres JL, Medina I. Fish oil supplementation counteracts the effect of high-fat and high-sucrose diets on the carbonylated proteome in the rat cerebral cortex. Biomed Pharmacother. 2023;168: 115708. https://doi.org/10.1016/j.biopha.2023.115708. [14] Yue K, Yang H, Li J, Bi Y, Zhang L, Lou W. UPU structured lipids and their preparation methods: a mini review. Food Biosci. 2023;55: 103009. https://doi.org/10.1016/j.fbio.2023.103009. [15] Zhou Y, Xie Y, Wang Z, Wang C, Wang Q. Effects of a novel medium-long-medium-type structured lipid synthesized using a two-step enzymatic method on lipid metabolism and obesity protection in experimental mice. Food Sci Nutr. 2023;11(8):4516-29. https://doi.org/10.1002/fsn3.3410. [16] Endo J, Arita M. Cardioprotective mechanism of omega-3 polyunsaturated fatty acids. J Cardiol. 2016;67(1):22-7. https://doi.org/10.1016/j.jjcc.2015.08.002. [17] Zhang T, Xu J, Wang Y, Xue C. Health benefits of dietary marine DHA/EPA-enriched glycerophospholipids. Prog Lipid Res. 2019;75: 100997. https://doi.org/10.1016/j.plipres.2019.100997. [18] Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R. Diversity, stability and resilience of the human gut microbiota. Nature. 2012;489(7415):220-30. https://doi.org/10.1038/nature11550. [19] Dogra SK, Doré J, Damak S. Gut microbiota resilience: definition, link to health and strategies for intervention. Front Microbiol. 2020;11: 572921. https://doi.org/10.3389/fmicb.2020.572921. [20] Xiao M, Huang M, Huan W, Dong J, Xiao J, Wu J, Wang D, Song L. Effects of Torreya grandis kernel oil on lipid metabolism and intestinal flora in C57BL/6J mice. Oxid Med Cell Longev. 2022. https://doi.org/10.1155/2022/4472751. [21] Ma Q, Li Y, Li P, Wang M, Wang J, Tang Z, Wang T, Luo L, Wang C, Zhao B. Research progress in the relationship between type 2 diabetes mellitus and intestinal flora. Biomed Pharmacother. 2019;117: 109138. https://doi.org/10.1016/j.biopha.2019.109138. [22] Deng J, Zhao L, Yuan X, Li Y, Shi J, Zhang H, Zhao Y, Han L, Wang H, Yan Y, Zhao H, Wang H, Zou F. Pre-administration of berberine exerts chemopreventive effects in AOM/DSS-induced colitis-associated carcinogenesis mice via modulating inflammation and intestinal microbiota. Nutrients. 2022;14(4):726. https://doi.org/10.3390/nu14040726. [23] Wang Q, Jia D, He J, Sun Y, Qian Y, Ge Q, Qi Y, Wang Q, Hu Y, Wang L, Fang Y, He H, Luo M, Feng L, Si J, Song Z. Lactobacillus intestinalis primes epithelial cells to suppress colitis-related Th17 response by host-microbe retinoic acid biosynthesis. Adv Sci. 2023;10(36):2303457. https://doi.org/10.1002/advs.202303457. [24] Xie L, Chi X, Wang H, Dai A, Dong J, Liu S, Zhang D. Mechanism of action of buckwheat quercetin in regulating lipid metabolism and intestinal flora via Toll-like receptor 4 or nuclear factor κB pathway in rats on a high-fat diet. Nutrition. 2023;115: 112148. https://doi.org/10.1016/j.nut.2023.112148. [25] Wang Z, Zhou S, Jiang Y. Sea buckthorn pulp and seed oils ameliorate lipid metabolism disorders and modulate gut microbiota in C57BL/6J mice on high-fat diet. Front Nutr. 2022;9:1067813. https://doi.org/10.3389/fnut.2022.1067813. [26] Chou T, Lu Y, Inbaraj BS, Chen B. Camelia oil and soybean-camelia oil blend enhance antioxidant activity and cardiovascular protection in hamsters. Nutrition. 2018;51:86-94. https://doi.org/10.1016/j.nut.2017.12.011. [27] Bibbò S, Ianiro G, Giorgio V, Scaldaferri F, Masucci L, Gasbarrini A, Cammarota G. The role of diet on gut microbiota composition. Eur Rev Med Pharmacol Sci. 2016;20(22):4742-9. [28] Lloyd-Price J, Abu-Ali G, Huttenhower C. The healthy human microbiome. Genome Med. 2016;8:1-11. https://doi.org/10.1186/s13073-016-0307-y. [29] Vieira-Silva S, Sabino J, Valles-Colomer M, Falony G, Kathagen G, Caenepeel C, et al. Quantitative microbiome profiling disentangles inflammation- and bile duct obstruction-associated microbiota alterations across PSC/IBD diagnoses. Nat Microbiol. 2019;4(11):1826-31. https://doi.org/10.1038/s41564-019-0483-9. [30] Zhang S, Wang H, Zhu M. A sensitive GC/MS detection method for analyzing microbial metabolites short chain fatty acids in fecal and serum samples. Talanta. 2019. https://doi.org/10.1016/j.talanta.2018.12.049. [31] Hodin CM, Visschers RGJ, Rensen SS, Boonen B, Damink SWMO, Lenaerts K, et al. Total parenteral nutrition induces a shift in the firmicutes to bacteroidetes ratio in association with paneth cell activation in rats, 2. J Nutr. 2012;142(12):2141-7. https://doi.org/10.3945/jn.112.162388. [32] Fan Y, Pedersen O. Gut microbiota in human metabolic health and disease. Nat Rev Microbiol. 2021;19(1):55-71. https://doi.org/10.1038/s41579-020-0433-9. [33] Krajmalnik-Brown R, Ilhan ZE, Kang DW, DiBaise JK. Effects of gut microbes on nutrient absorption and energy regulation. Nutr Clin Pract. 2012;27(2):201-14. https://doi.org/10.1177/0884533611436116. [34] Ye Z, Cao C, Li Q, Xu Y, Liu Y. Different dietary lipid consumption affects the serum lipid profiles, colonic short chain fatty acid composition and the gut health of Sprague Dawley rats. Food Res Int. 2020;132: 109117. https://doi.org/10.1016/j.foodres.2020.109117. [35] Caesar R, Tremaroli V, Kovatcheva-Datchary P, Cani Patrice D, Bäckhed F. Crosstalk between gut microbiota and dietary lipids aggravates WAT inflammation through TLR signaling. Cell Metab. 2015;22(4):658-68. https://doi.org/10.1016/j.cmet.2015.07.026. [36] Kübeck R, Bonet-Ripoll C, Hoffmann C, Walker A, Müller VM, Schüppel VL, Lagkouvardos I, Scholz B, Engel KH, Daniel H, Schmitt-Kopplin P, Haller D, Clavel T, Klingenspor M. Dietary fat and gut microbiota interactions determine diet-induced obesity in mice. Mol Metab. 2016;5(12):1162-74. https://doi.org/10.1016/j.molmet.2016.10.001. [37] Prasad KN, Bondy SC. Dietary fibers and their fermented short-chain fatty acids in prevention of human diseases. Bioactive Carbohydrates Dietary Fibre. 2019;17: 100170. https://doi.org/10.1016/j.bcdf.2018.09.001. [38] De Wit N, Derrien M, Bosch-Vermeulen H, Oosterink E, Keshtkar S, Duval C, de Vogel-van den Bosch J, Kleerebezem M, Muller M, van der Meer R. Saturated fat stimulates obesity and hepatic steatosis and affects gut microbiota composition by an enhanced overflow of dietary fat to the distal intestine. Am J Physiol Gastrointest Liver Physiol. 2012;303(5):G589-99. https://doi.org/10.1152/ajpgi.00488.2011. [39] Den Besten G, Van Eunen K, Groen AK, Venema K, Reijngoud DJ, Bakker BM. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res. 2013;54(9):2325-40. https://doi.org/10.1194/jlr.R036012. [40] Benítez-Páez A, Gómez Del Pulgar EM, Kjølbæk L, Brahe LK, Astrup A, Larsen L, Sanz Y. Impact of dietary fiber and fat on gut microbiota re-modeling and metabolic health. Trends Food Sci Technol. 2016;57:201-12. https://doi.org/10.1016/j.tifs.2016.11.001. [41] Ye Z, Li R, Cao C, Xu YJ, Cao P, Li Q, Liu Y. Fatty acid profiles of typical dietary lipids after gastrointestinal digestion and absorbtion: a combination study between in-vitro and in-vivo. Food Chem. 2019;280:34-44. https://doi.org/10.1016/j.foodchem.2018.12.032. [42] Wang L, Hu L, Yan S, Jiang T, Fang S, Wang G, Zhao J, Zhang H, Chen W. Effects of different oligosaccharides at various dosages on the composition of gut microbiota and short-chain fatty acids in mice with constipation. Food Funct. 2017;8(5):1966-78. https://doi.org/10.1039/c7fo00031f. |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|