Natural Products and Bioprospecting    2024, Vol. 14 Issue (3) : 21-21     DOI: 10.1007/s13659-024-00444-0
ORIGINAL ARTICLES |
Which is the optimal choice for neonates’ formula or breast milk?
Yueqi Hu, Xing Wu, Li Zhou, Jikai Liu
National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan 430074, People's Republic of China
Download: PDF(2645 KB)   HTML ()  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  The incidence of prematurity has been increasing since the twenty-first century. Premature neonates are extremely vulnerable and require a rich supply of nutrients, including carbohydrates, proteins, docosahexaenoic acid (DHA), arachidonic acid (ARA) and others. Typical breast milk serves as the primary source for infants under six months old to provide these nutrients. However, depending on the individual needs of preterm infants, a more diverse and intricate range of nutrients may be necessary. This paper provides a comprehensive review of the current research progress on the physical and chemical properties, biological activity, function, and structure of breast milk, as well as explores the relationship between the main components of milk globular membrane and infant growth. Additionally, compare the nutritional composition of milk from different mammals and newborn milk powder, providing a comprehensive understanding of the differences in milk composition and detailed reference for meeting daily nutritional needs during lactation.
Keywords Human milk      Physico-chemical properties      Human milk bioactive      Phospholipids      Mammalian milk     
Fund:This work was supported by Grants from Natural Science Foundation of Hubei Province (2022CFB458) and the Fundamental Research Funds for the Central Universities, South-Central MinZu University (CZZ23012).
Corresponding Authors: Li Zhou,E-mail:zhou2018@scuec.edu.cn;Jikai Liu,E-mail:liujikai@mail.scuec.edu.cn     E-mail: zhou2018@scuec.edu.cn;liujikai@mail.scuec.edu.cn
Issue Date: 14 June 2024
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yueqi Hu
Xing Wu
Li Zhou
Jikai Liu
Trendmd:   
Cite this article:   
Yueqi Hu,Xing Wu,Li Zhou, et al. Which is the optimal choice for neonates’ formula or breast milk?[J]. Natural Products and Bioprospecting, 2024, 14(3): 21-21.
URL:  
http://npb.kib.ac.cn/EN/10.1007/s13659-024-00444-0     OR     http://npb.kib.ac.cn/EN/Y2024/V14/I3/21
1. Meng F, Uniacke-Lowe T, Ryan AC, Kelly AL. The composition and physico-chemical properties of human milk: a review. Trends Food Sci Technol. 2021. https://doi.org/10.1016/j.tifs.2021.03.040.
2. Craft KM, Townsend SD. Mother knows best: deciphering the antibacterial properties of human milk oligosaccharides. Acc Chem Res. 2019. https://doi.org/10.1021/acs.accounts.8b00630.
3. Amissah EA, Brown J, Harding JE. Carbohydrate supplementation of human milk to promote growth in preterm infants. Cochrane Database Syst Rev. 2018. https://doi.org/10.1002/14651858.CD000280.pub2.
4. Lonnerdal B. Bioactive proteins in breast milk. J Paediatr Child Health. 2013. https://doi.org/10.1111/jpc.12104.
5. Koletzko B. Human milk lipids. Ann Nutr Metab. 2016. https://doi.org/10.1159/000452819.
6. Iyengar SR, Walker WA. Immune factors in breast milk and the development of atopic disease. J Pediatr Gastroenterol Nutr. 2012. https://doi.org/10.1097/MPG.0b013e3182617a9d.
7. Organization WH. EN Nutrition—Publications—Infant feeding—Implementing the global strategy for infant and young child feeding. 2003.
8. Brenna JT, Varamini B, Jensen RG, Diersen-Schade DA, Boettcher JA, Arterburn LM. Docosahexaenoic and arachidonic acid concentrations in human breast milk worldwide. Am J Clin Nutr. 2007. https://doi.org/10.1093/ajcn/85.6.1457.
9. Novak EM, Dyer RA, Innis SM. High dietary omega-6 fatty acids contribute to reduced docosahexaenoic acid in the developing brain and inhibit secondary neurite growth. Brain Res. 2008. https://doi.org/10.1016/j.brain res. 2008. 07. 107.
10. Brandtzaeg P. The mucosal immune system and its integration with the mammary glands. J Pediatr. 2010. https://doi.org/10.1016/j.jpeds.2009.11.014.
11. Hurley WL, Theil PK. Perspectives on immunoglobulins in colostrum and milk. Nutrients. 2011. https://doi.org/10.3390/nu3040442.
12. Fox A, Marino J, Amanat F, Krammer F, Hahn-Holbrook J, Zolla-Pazner S, et al. Evidence of a significant secretory-IgA-dominant SARS-CoV-2 immune response in human milk following recovery from COVID-19. medRxiv Infect Dis. 2020. https://doi.org/10.1101/2020.05.04.20089995.
13. Jessica Fanzo AL, Landis L, Astralaga M. 2018 Global Nutrition Report: Shining a light to spur action on nutrition. United Nations System Standing Committee on Nutrition. 2018.
14. Victora CG, Bahl R, Barros AJD, França GVA, Horton S, Krasevec J, et al. Breastfeeding in the 21st century: epidemiology, mechanisms, and lifelong effect. The Lancet. 2016. https://doi.org/10.1016/s0140-6736(15) 01024-7.
15. Escuder-Vieco D, Garcia-Algar O, Joya X, Marchei E, Pichini S, Pacifici R, et al. Breast milk and hair testing to detect illegal drugs, nicotine, and caffeine in donors to a human milk bank. J Hum Lact. 2016. https://doi.org/10.1177/0890334416648110.
16. Morriss FH, Brewer ED, Spedale SB, Riddle L, Temple DM, Caprioli RM, et al. Relationship of human milk pH during course of lactation to concentrations of citrate and fatty acids. Pediatrics. 1986. https://doi.org/10.1542/peds.78.3.458.
17. Sunarić S, Jovanović T, Spasić A, Denić M, Kocić G. Comparative analysis of the physicochemical parameters of breast milk, starter infant formulas and commercial cow milks in Serbia. Acta Facultatis Medicae Naissensis. 2016. https://doi.org/10.1515/afmnai-2016-0011.
18. Salamanca-Grosso G, Osorio-Tangarife MP, Romero-Acosta KF. Calidad fisicoquímica y microbiológica de la leche materna de madres donantes colombianas. Revista chilena de nutrición. 2019. https://doi.org/10.4067/s0717-75182019000400409.
19. Berkow SE, Freed LM, Hamosh M, Bitman J, Larry Wood D, Happ B, et al. Lipases and lipids in human milk: effect of freeze-thawing and storage. Pediatr Res. 1984. https://doi.org/10.1203/00006450-198412000-00006.
20. Erickson T, Gill G, Chan GM. The effects of acidification on human milk’s cellular and nutritional content. J Perinatol. 2012. https://doi.org/10.1038/jp.2012.117.
21. Fox PF, Uniacke-Lowe T, Mcsweeney PLH, O’Mahony JA. Dairy chemistry and biochemistry. Springer Cham. 2015. https://doi.org/10.1007/978-3-319-14892-2.
22. Anderson PO. Unusual milk colors. Breastfeed Med. 2018. https://doi.org/10.1089/bfm. 2018. 0015.
23. Hermann S, Nolson B. Breast cancer diagnosis while breastfeeding: when two worlds collide. Womens Health. 2012. https://doi.org/10.1111/j.1552-6909.2012.01363.x.
24. Borràs Novell C, Balcells Esponera C, Aldecoa-Bilbao V, Rodríguez-Miguélez JM, Herranz Barbero A. Breast milk with unusual colour. Medicina Clínica (English Edition). 2020. https://doi.org/10.1016/j.medcle.2019.04.040.
25. Bauer J, Gerss J. Longitudinal analysis of macronutrients and minerals in human milk produced by mothers of preterm infants. Clin Nutr. 2011. https://doi.org/10.1016/j.clnu.2010.08.003.
26. Ziegler EE, Fomon SJ. Lactose enhances mineral absorption in infancy. J Pediatr Gastroenterol Nutr 1983.
27. Coppa GV, Gabrielli O, Pierani P, Catassi C, Giorgi PL. Changes in carbohydrate composition in human milk over 4 months of lactation. Pediatrics. 1993;91:637.
28. Morozov V, Hansman G, Hanisch FG, Schroten H, Kunz C. Human milk oligosaccharides as promising antivirals. Mol Nutr Food Res. 2018. https://doi.org/10.1002/mnfr.201700679.
29. Morrow AL, Ruiz-Palacios GM, Jiang X, Newburg DS. Human-milk glycans that inhibit pathogen binding protect breast-feeding infants against infectious diarrhea. J Nutr. 2005. https://doi.org/10.1093/jn/135.5.1304.
30. Newburg DS, Ruiz-Palacios GM, Morrow AL. Human milk glycans protect infants against enteric pathogens. Annu Rev Nutr. 2005. https://doi.org/10.1146/annurev.nutr.25.050304.092553.
31. Andreas NJ, Kampmann B, Mehring Le-Doare K. Human breast milk: a review on its composition and bioactivity. Early Hum Dev. 2015. https://doi.org/10.1016/j.earlhumdev.2015.08.013.
32. German JB, Freeman SL, Lebrilla CB, Mills DA. Human milk oligosaccharides: evolution, structures and bioselectivity as substrates for intestinal bacteria. Nestle Nutr Workshop Ser Pediatr Program. 2008. https://doi.org/10.1159/000146322.
33. Kulinich A, Liu L. Human milk oligosaccharides: the role in the finetuning of innate immune responses. Carbohydr Res. 2016. https://doi.org/10.1016/j.carres.2016.07.009.
34. Cheng L, Akkerman R, Kong C, Walvoort MTC, de Vos P. More than sugar in the milk: human milk oligosaccharides as essential bioactive molecules in breast milk and current insight in beneficial effects. Crit Rev Food Sci Nutr. 2021. https://doi.org/10.1080/10408398.2020.1754756.
35. Ballard O, Morrow AL. Human milk composition: nutrients and bioactive factors. Pediatr Clin North Am. 2013. https://doi.org/10.1016/j.pcl.2012.10.002.
36. Hunt KM, Foster JA, Forney LJ, Schutte UM, Beck DL, Abdo Z, et al. Characterization of the diversity and temporal stability of bacterial communities in human milk. PLoS ONE. 2011. https://doi.org/10.1371/journal.pone.0021313.
37. Cabrera-Rubio R, Collado MC, Laitinen K, Salminen S, Isolauri E, Mira A. The human milk microbiome changes over lactation and is shaped by maternal weight and mode of delivery. Am J Clin Nutr. 2012. https://doi.org/10.3945/ajcn.112.037382.
38. Boucher HW, Talbot GH, Bradley JS, Edwards JE, Gilbert D, Rice LB, et al. Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clin Infect Dis. 2009. https://doi.org/10.1086/595011.
39. Pendleton JN, Gorman SP, Gilmore BF. Clinical relevance of the ESKAPE pathogens. Expert Rev Anti Infect Ther. 2013. https://doi.org/10.1586/eri.13.12.
40. Santajit S, Indrawattana N. Mechanisms of antimicrobial resistance in ESKAPE pathogens. Biomed Res Int. 2016. https://doi.org/10.1155/2016/2475067.
41. Ackerman DL, Craft KM, Doster RS, Weitkamp JH, Aronoff DM, Gaddy JA, et al. Antimicrobial and antibiofilm activity of human milk oligosaccharides against Streptococcus agalactiae, Staphylococcus aureus, and Acinetobacter baumannii. ACS Infect Dis. 2018. https://doi.org/10.1021/acsinfecdis.7b00183.
42. Craft KM, Townsend SD. Synthesis of lacto-N-tetraose. Carbohydr Res. 2017. https://doi.org/10.1016/j.carres.2017.02.001.
43. Craft KM, Thomas HC, Townsend SD. Interrogation of human milk oligosaccharide fucosylation patterns for antimicrobial and antibiofilm trends in group B Streptococcus. ACS Infect Dis. 2018. https://doi.org/10.1021/acsinfecdis.8b002 34.
44. Craft KM, Thomas HC, Townsend SD. Sialylated variants of lacto-Ntetraose exhibit antimicrobial activity against Group B Streptococcus. Org Biomol Chem. 2019. https://doi.org/10.1039/c8ob02080a.
45. Gao X, Wu D, Wen Y, Gao L, Liu D, Zhong R, et al. Antiviral effects of human milk oligosaccharides: a review. Int Dairy J. 2020. https://doi.org/10.1016/j.idairyj.2020.104784.
46. Golinelli L, Aguila ED, Paschoalin V, Silva J, Junior C. Functional aspect of colostrum and whey proteins in human milk. J Hum Nutr Food Sci. 2014.
47. Bruck WM, Kelleher SL, Gibson GR, Graverholt G, Lonnerdal BL. The effects of alpha-lactalbumin and glycomacropeptide on the association of CaCo-2 cells by enteropathogenic Escherichia coli, Salmonella typhimurium and Shigella flexneri. FEMS Microbiol Lett. 2006. https://doi.org/10.1111/j.1574-6968.2006.00268.x.
48. Molinari CE, Casadio YS, Hartmann BT, Livk A, Bringans S, Arthur PG, et al. Proteome mapping of human skim milk proteins in term and preterm milk. J Proteome Res. 2012. https://doi.org/10.1021/pr2008797.
49. Lonnerdal B, Erdmann P, Thakkar SK, Sauser J, Destaillats F. Longitudinal evolution of true protein, amino acids and bioactive proteins in breast milk: a developmental perspective. J Nutr Biochem. 2017. https://doi.org/10.1016/j.jnutbio.2016.06.001.
50. Wada Y, Lonnerdal B. Bioactive peptides derived from human milk proteins–mechanisms of action. J Nutr Biochem. 2014. https://doi.org/10.1016/j.jnutbio.2013.10.012.
51. Park YW, Nam MS. Bioactive peptides in milk and dairy products: a review. Korean J Food Sci Anim Resour. 2015. https://doi.org/10.5851/kosfa.2015.35.6.831.
52. Liao Y, Jiang R, Lonnerdal B. Biochemical and molecular impacts of lactoferrin on small intestinal growth and development during early life. Biochem Cell Biol. 2012. https://doi.org/10.1139/o11-075.
53. Meisel H, FitzGerald J. Biofunctional peptides from milk proteins: mineral binding and cytomodulatory effects. Curr Pharm Des. 2003. https://doi.org/10.2174/1381612033454847.
54. Lonnerdal B. Bioactive proteins in human milk-potential benefits for preterm infants. Clin Perinatol. 2017. https://doi.org/10.1016/j.clp.2016.11.013.
55. Dallas DC, Guerrero A, Khaldi N, Castillo PA, Martin WF, Smilowitz JT, et al. Extensive in vivo human milk peptidomics reveals specific proteolysis yielding protective antimicrobial peptides. J Proteome Res. 2013. https://doi.org/10.1021/pr400212z.
56. Martin P, Ferranti P, Leroux C, Addeo F. Non-bovine caseins: quantitative variability and molecular diversity. Adv Dairy Chem. 2003. https://doi.org/10.1007/978-1-4419-8602-3_6.
57. Almeida CC, Mendonca Pereira BF, Leandro KC, Costa MP, Spisso BF, Conte-Junior CA. Bioactive compounds in infant formula and their effects on infant nutrition and health: a systematic literature review. Int J Food Sci. 2021. https://doi.org/10.1155/2021/88500 80.
58. Carroll RJ, Basch JJ, Phillips JG, Farrell H. Ultrastructural and biochemical investigations of mature human milk. Food Struct. 1985
59. Sood SM, Slatter CW. Suspension of the calcium-sensitive human β-caseins by human κ-casein. J Dairy Sci. 2002. https://doi.org/10.3168/JDS.S0022-0302(02)74200-8.
60. Holt C, Horne DS. The hairy casein micelle: evolution of the concept and its implications for dairy technology. Netherlands Milk Dairy J. 1996.
61. Bo L, Woodhouse LR, Glazier C. Compartmentalization and quantitation of protein in human milk. J Nutr. 1987. https://doi.org/10.1093/jn/117.8.1385.
62. Hernández-Ledesma B, Quirós A, Amigo L, Recio I. Identification of bioactive peptides after digestion of human milk and infant formula with pepsin and pancreatin. Int Dairy J. 2007. https://doi.org/10.1016/j.idairyj.2005.12.012.
63. Miehlke S, Reddy R, Osato MS, Ward PP, Graham DY. Direct activity of recombinant human lactoferrin against Helicobacter pylori. J Clin Microbiol. 1996. https://doi.org/10.1128/jcm.34.10.2593-2594.1996.
64. Strömqvist M, Falk P, Bergstrom S. Human milk kappa-casein and inhibition of Helicobacter pylori adhesion to human gastric mucosa. J Pediatr Gastroenterol Nutr. 1995. https://doi.org/10.1097/00005176-19951 0000-00006.
65. Sánchez A, Vázquez A. Bioactive peptides: a review. Food Qual Safety. 2017. https://doi.org/10.1093/fqsafe/fyx006.
66. Enjapoori AK, Kukuljan S, Dwyer KM, Sharp JA. In vivo endogenous proteolysis yielding beta-casein derived bioactive beta-casomorphin peptides in human breast milk for infant nutrition. Nutrition. 2019. https://doi.org/10.1016/j.nut.2018.05.011.
67. Fu Y, Ji C, Chen X, Cui X, Wang X, Feng J, et al. Investigation into the antimicrobial action and mechanism of a novel endogenous peptide beta-casein 197 from human milk. AMB Express. 2017. https://doi.org/10.1186/s13568-017-0409-y.
68. Inglingstad RA, Devold TG, Eriksen EK, Holm H, Jacobsen M, Liland KH, et al. Comparison of the digestion of caseins and whey proteins in equine, bovine, caprine and human milks by human gastrointestinal enzymes. Dairy Sci Technol. 2010. https://doi.org/10.1051/dst/2010018.
69. Perinelli DR, Bonacucina G, Cespi M, Bonazza F, Palmieri GF, Pucciarelli S, et al. A comparison among beta-caseins purified from milk of different species: self-assembling behaviour and immunogenicity potential. Colloids Surf B Biointerfaces. 2019. https://doi.org/10.1016/j.colsurfb. 2018. 09. 079.
70. Spada V, Ferranti P, Chianese L, Salimei E, Addeo F, Picariello G. Antibacterial potential of donkey’s milk disclosed by untargeted proteomics. J Proteomics. 2021. https://doi.org/10.1016/j.jprot.2020.104007.
71. Inagaki M, Muranishi H, Yamada K, Kakehi K, Uchida K, Suzuki T, et al. Bovine kappa-casein inhibits human rotavirus (HRV) infection via direct binding of glycans to HRV. J Dairy Sci. 2014. https://doi.org/10.3168/jds.2013-7792.
72. Hernández-Ledesma B, Ramos M, Gómez-Ruiz JÁ. Bioactive components of ovine and caprine cheese whey. Small Ruminant Res. 2011. https://doi.org/10.1016/j.smallrumres. 2011. 09. 040.
73. Brandelli A, Daroit DJ, Corrêa APF. Whey as a source of peptides with remarkable biological activities. Food Res Int. 2015. https://doi.org/10.1016/j.foodres.2015.01.016.
74. Zhao C, Ashaolu TJ. Bioactivity and safety of whey peptides. Lwt. 2020. https://doi.org/10.1016/j.lwt. 2020. 109935.
75. Dekker PM, Boeren S, Wijga AH, Koppelman GH, Vervoort JJM, Hettinga KA. Maternal allergy and the presence of nonhuman proteinaceous molecules in human milk. Nutrients. 2020. https://doi.org/10.3390/nu12041169.
76. Griffiths J, Jenkins P, Vargova M, Bowler U, Juszczak E, King A, et al. Enteral lactoferrin supplementation for very preterm infants: a randomised placebo-controlled trial. The Lancet. 2019. https://doi.org/10.1016/s0140-6736(18)32221-9.
77. Asztalos EV, Barrington K, Lodha A, Tarnow-Mordi W, Martin A. Lactoferrin infant feeding trial_Canada (LIFT_Canada): protocol for a randomized trial of adding lactoferrin to feeds of very-low-birthweight preterm infants. BMC Pediatr. 2020. https://doi.org/10.1186/s12887-020-1938-0.
78. Zavaleta N, Figueroa D, Rivera J, Sánchez J, Alfaro S, Bo L. Efficacy of rice-based oral rehydration solution containing recombinant human lactoferrin and lysozyme in Peruvian children with acute diarrhea. J Pediatr Gastroenterol Nutr. 2007. https://doi.org/10.1097/MPG.0b013e31802c41b7.
79. Brandtzaeg P. Secretory IgA: designed for anti-microbial defense. Front Immunol. 2013. https://doi.org/10.3389/fimmu.2013.00222.
80. Verhasselt V. Neonatal tolerance under breastfeeding influence: the presence of allergen and transforming growth factor-beta in breast milk protects the progeny from allergic asthma. J Pediatr. 2010. https://doi.org/10.1016/j.jpeds. 2009. 11. 015.
81. Lu J, Wang X, Zhang W, Liu L, Pang X, Zhang S, et al. Comparative proteomics of milk fat globule membrane in different species reveals variations in lactation and nutrition. Food Chem. 2016. https://doi.org/10.1016/j.foodchem.2015.10.005.
82. Liao Y, Alvarado R, Phinney B, Lonnerdal B. Proteomic characterization of human milk fat globule membrane proteins during a 12 month lactation period. J Proteome Res. 2011. https://doi.org/10.1021/pr200 149t.
83. Demmelmair H, Prell C, Timby N, Lonnerdal B. Benefits of lactoferrin, osteopontin and milk fat globule membranes for infants. Nutrients. 2017. https://doi.org/10.3390/nu908 0817.
84. Franke AA, Halm BM, Custer LJ, Yvonne T, Sandra H. Isoflavones in breastfed infants after mothers consume soy. Am J Clin Nutr. 2006. https://doi.org/10.1093/ajcn/84.1.406.
85. Bolca S, Urpi-Sarda M, Blondeel P, Roche N, Vanhaecke L, Possemiers S, et al. Disposition of soy isoflavones in normal human breast tissue. Am J Clin Nutr. 2010. https://doi.org/10.3945/ajcn.2009.28854.
86. Lu Z, Chan YT, Lo KH, Wong WS, Ng YF, Li SY, et al. Levels of polyphenols and phenolic metabolites in breast milk and their association with plant-based food intake in Hong Kong lactating women. Food Funct. 2021. https://doi.org/10.1039/D1FO02529E.
87. Jochum F, Alteheld B, Meinardus P, Dahlinger N, Nomayo A, Stehle P. Mothers’ consumption of soy drink but not black tea increases the flavonoid content of term breast milk: a pilot randomized, controlled intervention study. Ann Nutr Metab. 2017. https://doi.org/10.1159/000471857.
88. Song BJ, Jouni ZE, Ferruzzi MG. Assessment of phytochemical content in human milk during different stages of lactation. Nutrition. 2013. https://doi.org/10.1016/j.nut. 2012. 07. 015.
89. Romaszko E, Wiczkowski W, Romaszko J, Honke J, Piskula MK. Exposure of breastfed infants to quercetin after consumption of a single meal rich in quercetin by their mothers. Mol Nutr Food Res. 2014. https://doi.org/10.1002/mnfr. 20120 0773.
90. Pejcic T, Zekovic M, Bumbasirevic U, Kalaba M, Vovk I, Bensa M, et al. The role of isoflavones in the prevention of breast cancer and prostate cancer. Antioxidants (Basel). 2023. https://doi.org/10.3390/antiox12020368.
91. Nalewajko-Sieliwoniuk E, Hryniewicka M, Jankowska D, Kojlo A, Kamianowska M, Szczepanski M. Dispersive liquid-liquid microextraction coupled to liquid chromatography tandem mass spectrometry for the determination of phenolic compounds in human milk. Food Chem. 2020. https://doi.org/10.1016/j.foodchem. 2020. 126996.
92. Khymenets O, Rabassa M, Rodriguez-Palmero M, Rivero-Urgell M, Urpi-Sarda M, Tulipani S, et al. Dietary epicatechin is available to breastfed infants through human breast milk in the form of host and microbial metabolites. J Agric Food Chem. 2016. https://doi.org/10.1021/acs.jafc.6b01947.
93. Zhang X, Sandhu A, Edirisinghe I, Burton-Freeman B. An exploratory study of red raspberry (Rubus idaeus L.) (poly)phenols/metabolites in human biological samples. Food Funct. 2018. https://doi.org/10.1039/c7fo0 0893g.
94. Szwajgier D, Borowiec K, Pustelniak K. The neuroprotective effects of phenolic acids: molecular mechanism of action. Nutrients. 2017. https://doi.org/10.3390/nu905 0477.
95. Magnani C, Isaac VLB, Correa MA, Salgado HRN. Caffeic acid: a review of its potential use in medications and cosmetics. Anal Methods. 2014. https://doi.org/10.1039/c3ay4 1807c.
96. Lin J, Weng M. Flavonoids as nutraceuticals. Sci Flavonoids. 2006. https://doi.org/10.1007/978-0-387-28822-2_8.
97. Altan-Bonnet G, Mukherjee R. Cytokine-mediated communication: a quantitative appraisal of immune complexity. Nat Rev Immunol. 2019. https://doi.org/10.1038/s41577-019-0131-x.
98. Kiguchi N, Kobayashi Y, Kishioka S. Chemokines and cytokines in neuroinflammation leading to neuropathic pain. Curr Opin Pharmacol. 2012. https://doi.org/10.1016/j.coph. 2011. 10. 007.
99. Luster AD. Chemokines–chemotactic cytokines that mediate inflammation. N Engl J Med. 1998. https://doi.org/10.1056/NEJM1 99802 12338 0706.
100. Dinarello CA. Overview of the IL-1 family in innate inflammation and acquired immunity. Immunol Rev. 2018. https://doi.org/10.1111/imr. 12621.
101. Akdis M, Burgler S, Crameri R, Eiwegger T, Fujita H, Gomez E, et al. Interleukins, from 1 to 37, and interferon-gamma: receptors, functions, and roles in diseases. J Allergy Clin Immunol. 2011. https://doi.org/10.1016/j.jaci. 2010. 11. 050.
102. Mancuso P. The role of adipokines in chronic inflammation. Immunotargets Ther. 2016. https://doi.org/10.2147/ITT.S73223.
103. Pereira S, Alvarez-Leite J. Adipokines: biological functions and metabolically healthy obese profile. J Receptor Ligand Channel Res. 2014. https://doi.org/10.2147/jrlcr.S36060.
104. Chu WM. Tumor necrosis factor. Cancer Lett. 2013. https://doi.org/10.1016/j.canlet.2012.10.014.
105. Strieter RM, Kunkel SL, Bone RC. Role of tumor necrosis factor-alpha in disease states and inflammation. Crit Care Med. 1993;21:S425–33. https://doi.org/10.1097/00003246-199310001-00006.
106. Grabarek B, Bednarczyk M, Mazurek U. The characterization of tumor necrosis factor alpha (TNF-α), its role in cancerogenesis and cardiovascular system diseases and possibilities of using this cytokine as a molecular marker. Folia Biologica et Oecologica. 2017. https://doi.org/10.1515/fobio-2017-0001.
107. Kielbasa A, Gadzala-Kopciuch R, Buszewski B. Cytokines-biogenesis and their role in human breast milk and determination. Int J Mol Sci. 2021. https://doi.org/10.3390/ijms22126238.
108. Nolan LS, Parks OB, Good M. A review of the immunomodulating components of maternal breast milk and protection against necrotizing enterocolitis. Nutrients. 2019. https://doi.org/10.3390/nu12010014.
109. Panahipour L, Tabatabaei AA, Gruber R. Hypoallergenic infant formula lacks transforming growth factor beta activity and has a lower antiinflammatory activity than regular infant formula. J Dairy Sci. 2020. https://doi.org/10.3168/jds.2019-18067.
110. Hansen LW, Khader A, Yang WL, Jacob A, Chen T, Nicastro JM, et al. Deficiency in milk fat globule-epidermal growth factor-factor 8 exacerbates organ injury and mortality in neonatal sepsis. J Pediatr Surg. 2017. https://doi.org/10.1016/j.jpedsurg. 2016. 12. 022.
111. Asaro JA, Khan Z, Brewer M, Klose K, Pesce C, Schanler RJ, et al. Relationship between milk fat globule-epidermal growth factor 8 and intestinal cytokines in infants born preterm. J Pediatr. 2021. https://doi.org/10.1016/j.jpeds.2020.11.014.
112. Yang WL, Sharma A, Zhang F, Matsuo S, Wang Z, Wang H, et al. Milk fat globule epidermal growth factor-factor 8-derived peptide attenuates organ injury and improves survival in sepsis. Crit Care. 2015. https://doi.org/10.1186/s13054-015-1094-3.
113. Albus E, Sinningen K, Winzer M, Thiele S, Baschant U, Hannemann A, et al. Milk fat globule-epidermal growth factor 8 (MFG-E8) is a novel anti-inflammatory factor in rheumatoid arthritis in mice and humans. J Bone Miner Res. 2016. https://doi.org/10.1002/jbmr.2721.
114. Chen L, Deng H, Cui H, Fang J, Ling Z. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget. 2015. https://doi.org/10.18632/oncotarget.23208.
115. Barnes PJ, Rennard SI, Drazen JM, Thomson NC. Asthma and COPD: basic mechanisms and clinical management. Elsevier Oceanogr Ser. 2008. https://doi.org/10.1016/B978-0-12-374001-4.X0001-6.
116. Keustermans GC, Hoeks SB, Meerding JM, Prakken BJ, de Jager W. Cytokine assays: an assessment of the preparation and treatment of blood and tissue samples. Methods. 2013. https://doi.org/10.1016/j.ymeth.2013.04.005.
117. Stenken JA, Poschenrieder AJ. Bioanalytical chemistry of cytokines–a review. Anal Chim Acta. 2015. https://doi.org/10.1016/j.aca.2014.10.009.
118. Pajewska-Szmyt M, Sinkiewicz-Darol E, Gadzala-Kopciuch R. The impact of environmental pollution on the quality of mother’s milk. Environ Sci Pollut Res Int. 2019. https://doi.org/10.1007/s11356-019-04141-1.
119. Nagasaki Y, Kawai E, Maruoka S, Osumi M, Tsukayama I, Kawakami Y, et al. Lipid profiling reveals the presence of unique lipid mediators in human milk from healthy and mastitic subjects. Biochem Biophys Res Commun. 2022. https://doi.org/10.1016/j.bbrc. 2022. 09. 051.
120. Demmelmair H, Koletzko B. Lipids in human milk. Best Pract Res Clin Endocrinol Metab. 2018. https://doi.org/10.1016/j.beem. 2017. 11. 002.
121. Innis SM. Dietary triacylglycerol structure and its role in infant nutrition. Adv Nutr. 2011. https://doi.org/10.3945/an. 111. 000448.
122. Bar-Yoseph F, Lifshitz Y, Cohen T, Malard P, Xu C. SN2-palmitate reduces fatty acid excretion in Chinese formula-fed infants. J Pediatr Gastroenterol Nutr. 2016. https://doi.org/10.1097/MPG. 00000 00000 000971.
123. Camielli VP. 47 Structural position and amount of palmitic acid in infant formulas: effects on fat and mineral balance. Pediatr Res. 1994. https://doi.org/10.1203/00006 450-19940 7000-00047.
124. Dewettinck K, Rombaut R, Thienpont N, Le TT, Messens K, Van Camp J. Nutritional and technological aspects of milk fat globule membrane material. Int Dairy J. 2008. https://doi.org/10.1016/j.idair yj.2007. 10. 014.
125. Liu Z, Rochfort S, Cocks B. Milk lipidomics: what we know and what we don’t. Prog Lipid Res. 2018. https://doi.org/10.1016/j.plipr es. 2018. 06. 002.
126. Wei W, Yang J, Yang D, Wang X, Yang Z, Jin Q, et al. Phospholipid composition and fat globule structure I: comparison of human milk fat from different gestational ages, lactation stages, and infant formulas. J Agric Food Chem. 2019. https://doi.org/10.1021/acs. jafc. 9b042 47.
127. Merrill AH, Schmelz EM, Dillehay DL, Spiegel S, Shayman JA, Schroeder JJ, et al. Sphingolipids–the enigmatic lipid class: biochemistry, physiology, and pathophysiology. Toxicol Appl Pharmacol. 1997. https://doi.org/10.1006/taap. 1996. 8029.
128. Küllenberg D, Taylor LA, Schneider M, Massing U. Health effects of dietary phospholipids. Lipids Health Dis. 2012. https://doi.org/10.1186/1476-511X-11-3.
129. Vickers MH, Jian G, Gustavsson M, Krägeloh C, Hodgkinson SC. Supplementation with a mixture of complex lipids derived from milk to growing rats results in improvements in parameters related to growth and cognition. Nutr Res. 2009. https://doi.org/10.1016/j.nutres. 2009. 06. 001.
130. Guillermo RB, Yang P, Vickers MH, Mcjarrow P, Guan J. Supplementation with complex milk lipids during brain development promotes neuroplasticity without altering myelination or vascular density. Food Nutr Res. 2015. https://doi.org/10.3402/fnr. v59. 25765.
131. Markworth JF, Durainayagam B, Figueiredo VC, Liu K, Guan J, Macgibbon A, et al. Dietary supplementation with bovine-derived milk fat globule membrane lipids promotes neuromuscular development in growing rats. Nutr Metab. 2017. https://doi.org/10.1186/s12986-017-0161-y.
132. Zavaleta N, Kvistgaard AS, Graverholt G, Respicio G, Guija H, Valencia N, et al. Efficacy of an MFGM-enriched complementary food in diarrhea, anemia, and micronutrient status in infants. J Pediatr Gastroenterol Nutr. 2015. https://doi.org/10.1097/MPG. 0b013 e3182 25cdaf.
133. Timby N, Hernell O, Vaarala O, Melin M, Lönnerdal B, Domellöf M. Infections in infants fed formula supplemented with bovine milk fat globule membranes. J Pediatr Gastroenterol Nutr. 2015. https://doi.org/10.1097/MPG. 00000 00000 000624.
[1] Rong Huang, Jiaxu Yao, Li Zhou, Xiang Li, Jinrui Zhu, Yueqi Hu, Jikai Liu. Protective effect and mechanism insight of purified Antarctic krill phospholipids against mice ulcerative colitis combined with bioinformatics[J]. Natural Products and Bioprospecting, 2023, 13(2): 11-11.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed