ORIGINAL ARTICLES |
|
|
|
|
|
Interaction mechanism between luteoloside and corn silk glycans and the synergistic role in hypoglycemic activity |
Shihui Qin1,3, Yanlang Li3, Huiyan Shao3, Yang Yu1, Yina Yang1, Yi Zeng1, Jia Huang3, Jiang-miao Hu3, Liu Yang2,3 |
1. College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China; 2. State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, 999078, China; 3. State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China |
|
|
Abstract As the two most principal active substances in the corn silk, polysaccharides and flavonoids, the mechanism of interaction between them has been a topic of intense research. This study provides an in-depth investigation of the interaction mechanism between corn silk glycans and luteoloside (LUT) and the synergistic role that result from this interaction. The interaction mechanism was evaluated by isothermal titration calorimetry (ITC) and circular dichroism (CD), and the synergistic role was evaluated by the expression of glucose transporters (GLUT-1), insulin secretion and surface plasmon resonance (SPR). CD and ITC results indicated that the interaction between CSGs and LUT mainly driven by the Cotton effects, enthalpy and entropy-driven. This interaction precipitated the formation of complexes (CSGs/LUT complexes) between corn silk glycans (CSGs) with four different molecular weights and luteoloside (LUT). Furthermore, the CSGs and LUT play a synergistic role in glucose regulation through GLUT-1 expression and insulin secretion experiments, compared to single luteoloside group.
|
Keywords
Corn silk glycans
CSGs/LUT complexes
The molecular interaction mechanism
The synergistic role
|
Fund:The Chinese Academy of Sciences: KFJ-BRP-007-019, the authors declare no competing interests. |
Corresponding Authors:
Jiang-miao Hu,E-mail:hujiangmiao@mail.kib.ac.cn;Liu Yang,E-mail:yangliu@mail.kib.ac.cn
E-mail: hujiangmiao@mail.kib.ac.cn;yangliu@mail.kib.ac.cn
|
Issue Date: 19 February 2024
|
|
|
[1] Renard CMGC, Watrelot AA, Le Bourvellec C. Interactions between polyphenols and polysaccharides: mechanisms and consequences in food processing and digestion. Trends Food Sci Technol. 2017;60:43–51. https://doi.org/10.1016/j.tifs.2016.10.022. [2] Doublier JL, Garnier C, Renard D, Sanchez C. Protein–polysaccharide interactions. Curr Opin Colloid Interface Sci. 2000;5(3):202–14. https://doi.org/10.1016/S1359-0294(00)00054-6. [3] Xiong WF, Ren C, Jin WP, Tian J, Wang YT, Shah BR, Li J, Li B. Ovalbumin-chitosan complex coacervation: phase behavior, thermodynamic and rheological properties. Food Hydrocolloids. 2016;61:895–902. https://doi.org/10.1016/j.foodhyd.2016.07.018. [4] Kötz J, Kosmella S, Beitz T. Self-assembled polyelectrolyte systems. Prog Polym Sci. 2001;26(8):1199–232. https://doi.org/10.1016/S0079-6700(01)00016-8. [5] Sahoo JK, VandenBerg MA, Webber MJ. Injectable network biomaterials via molecular or colloidal self-assembly. Adv Drug Delivery Rev. 2018;127:185–207. https://doi.org/10.1016/j.addr.2017.11.005. [6] Vuillemin ME, Michaux F, Seiler A, Linder M, Muniglia L, Jasniewski J. Polysaccharides enzymatic modification to control the coacervation or the aggregation behavior: a thermodynamic study. Food Hydrocolloids. 2022;122:107092. https://doi.org/10.1016/j.foodhyd.2021.107092. [7] Hu QB, Gerhard H, Upadhyaya I, Venkitanarayanan KM, Luo YC. Antimicrobial eugenol nanoemulsion prepared by gum arabic and lecithin and evaluation of drying technologies. Int J Biol Macromol. 2016;87:130–40. https://doi.org/10.1016/j.ijbiomac.2016.02.051. [8] Luo YC, Wang Q. Recent development of Chitosan-based polyelectrolyte complexes with natural polysaccharides for drug delivery. Int J Biol Macromol. 2014;64:353–67. https://doi.org/10.1016/j.ijbiomac.2013.12.017. [9] Seidi F, Yazdi MK, Jouyandeh M, Habibzadeh S, Munir MT, Vahabi H, Bagheri B, Rabiee N, Zarrintaj P, Saeb MR. Crystalline polysaccharides: a review. Carbohydr Polym. 2022;275:118624. https://doi.org/10.1016/j.carbpol.2021.118624. [10] Zhou SS, Xu J, Zhu H, Wu J, Xu JD, Yan R, Li XY, Liu HH, Duan SM, Wang Z, et al. Gut microbiota-involved mechanisms in enhancing systemic exposure of ginsenosides by coexisting polysaccharides in ginseng decoction. Sci Rep. 2016;6(1):22474. https://doi.org/10.1038/srep22474. [11] Yang YQ, Lin LZ, Zhao MM, Yang XY. The hypoglycemic and hypolipemic potentials of Moringa oleifera leaf polysaccharide and polysaccharide-flavonoid complex. Int J Bio Macromol. 2022;210:518–29. https://doi.org/10.1016/j.ijbiomac.2022.04.206. [12] Zhang Y, Wu LY, Ma ZS, Cheng J, Liu JB, Anti-Diabetic. Anti-oxidant and anti-hyperlipidemic activities of flavonoids from Corn Silk on STZ-Induced Diabetic mice. Molecules. 2015;21(1):E7. https://doi.org/10.3390/molecules21010007. [13] Wang XZ, Yuan LY, Bao ZJ, Fu BS, Jiang PF, Ma TC, Lin SY. Screening of uric acid-lowering active components of corn silk polysaccharide and its targeted improvement on renal excretory dysfunction in hyperuricemia mice. J Funct Foods. 2021;86:104698. https://doi.org/10.1016/j.jff.2021.104698. [14] Zhou WY, Niu JQ, Li Q, Du NN, Li JY, Lin B, Yao GD, Huang XX, Song SJ. Utilization of the by-product of corn: guided identification of bioactive terpenoids from Stigma Maydis (Corn Silk). J Agric Food Chem. 2023;71(7):3338–49. https://doi.org/10.1021/acs.jafc.2c08452. [15] Pan YX, Wang C, Chen ZQ, Li WW, Yuan GQ, Chen HX. Physicochemical properties and antidiabetic effects of a polysaccharide from corn silk in high-fat diet and streptozotocin-induced diabetic mice. Carbohydr Polym. 2017;164:370–8. https://doi.org/10.1016/j.carbpol.2017.01.092. [16] Zhang L, Yang Y, Wang ZY. Extraction optimization of polysaccharides from corn silk and their antioxidant activities in vitro and in vivo. Front Pharmacol. 2021;12:738150. https://doi.org/10.3389/fphar.2021.738150. [17] Yang JY, Li X, Xue Y, Wang N, Liu WC. Anti-hepatoma activity and mechanism of corn silk polysaccharides in H22 tumor-bearing mice. Int J Biol Macromol. 2014;64:276–80. https://doi.org/10.1016/j.ijbiomac.2013.11.033. [18] Makvandi P, Ali GW, Sala FD, Abdel-Fattah WI, Borzacchiello A. Biosynthesis and characterization of antibacterial thermosensitive hydrogels based on corn silk extract, hyaluronic acid and nanosilver for potential wound healing. Carbohydr Polym. 2019;223:115023. https://doi.org/10.1016/j.carbpol.2019.115023. [19] Jia YN, Xue ZH, Wang YJ, Lu YP, Li RL, Li NN, Wang QR, Zhang M, Chen HX. Chemical structure and inhibition on α-glucosidase of polysaccharides from corn silk by fractional precipitation. Carbohydr Polym. 2021;252:117185. https://doi.org/10.1016/j.carbpol.2020.117185. [20] Guo QW, Chen ZQ, Santhanam RK, Xu LL, Gao XD, Ma QQ, Xue ZH, Chen HX. Hypoglycemic effects of polysaccharides from corn silk (Maydis stigma) and their beneficial roles via regulating the PI3K/Akt signaling pathway in L6 skeletal muscle myotubes. Int J Biol Macromol. 2019;121:981–8. https://doi.org/10.1016/j.ijbiomac.2018.10.100. [21] Šebek J, Knaanie R, Albee B, Potma EO, Gerber RB. Spectroscopy of the C–H stretching vibrational Band in selected Organic molecules. J Phys Chem A. 2013;117(32):7442–52. https://doi.org/10.1021/jp4014674. [22] Yang XL, Wang RF, Zhang SP, Zhu WJ, Tang J, Liu JF, Chen P, Zhang DM, Ye WC, Zheng YL. Polysaccharides from Panax japonicus C.A. Meyer and their antioxidant activities. Carbohydr Polym. 2014;101:386–91. https://doi.org/10.1016/j.carbpol.2013.09.038. [23] Kuang MT, Li JY, Yang XB, Yang L, Xu JY, Yan S, Lv YF, Ren FC, Hu JM, Zhou J. Structural characterization and hypoglycemic effect via stimulating glucagon-like peptide-1 secretion of two polysaccharides from Dendrobium officinale Carbohydr Polym. 2020;241:116326. https://doi.org/10.1016/j.carbpol.2020.116326. [24] Xing XH, Cui SW, Nie SP, Phillips GO, Goff HD, Wang Q. Study on Dendrobium officinale O-acetyl-glucomannan (Dendronan®): Part I. extraction, purification, and partial structural characterization. Bioact Carbohydr Diet Fibre. 2014;4(1):74–83. https://doi.org/10.1016/j.bcdf.2014.06.004. [25] Gavilan L, Carrasco N, Hoffmann SV, Jones NC, Mason NJ. Organic aerosols in anoxic and oxic atmospheres of Earth-like exoplanets: VUV-MIR Spectroscopy of CHON Tholins. Astrophys J. 2018;861:110. https://doi.org/10.3847/1538-4357/aac8df. [26] Guo QW, Ma QQ, Xue ZH, Gao XD, Chen HX. Studies on the binding characteristics of three polysaccharides with different molecular weight and flavonoids from corn silk (Maydis stigma). Carbohydr Polym. 2018;198:581–8. https://doi.org/10.1016/j.carbpol.2018.06.120. [27] Gnudi L, Raij L. The link between Glut-1 and Hypertension in diabetic Nephropathy. Curr Hypertens Rep. 2006;8(1):79–83. https://doi.org/10.1007/s11906-006-0044-5. [28] Dubois M, Gilles K, Hamilton JK, Rebers PA, Smith F. A colorimetric method for the determination of sugars. Nature. 1951;168(4265):167. https://doi.org/10.1038/168167a0. [29] Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Geoeke NM, Olson BJ, Klenk DC. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985;150(1):76–85. https://doi.org/10.1016/0003-2697(85)90442-7. [30] Chen YJ, Wang J, Wan DR. Determination of total flavonoids in three Sedum crude Drugs by UV–Vis spectrophotometry. Pharmacogn Mag. 2010;6:259–63. https://doi.org/10.4103/0973-1296.71784. [31] Blumenkrantz N, Asboe-Hansen G. New method for quantitative determination of uronic acids. Anal Biochem. 1973;54(2):484–9. https://doi.org/10.1016/0003-2697(73)90377-1. [32] Li WW, Wang C, Yuan GQ, Pan YX, Chen HX. Physicochemical characterisation and α-amylase inhibitory activity of tea polysaccharides under simulated salivary, gastric and intestinal conditions. Int J Food Sci Technol. 2018;53(2):423–9. https://doi.org/10.1111/ijfs.13600. [33] Dai J, Wu Y, Chen SW, Zhu S, Yin HP, Wang M, Tang J. Sugar compositional determination of polysaccharides from Dunaliella salina by modified RP-HPLC method of precolumn derivatization with 1-phenyl-3-methyl-5-pyrazolone. Carbohydr Polym. 2010;82(3):629–35. https://doi.org/10.1016/j.carbpol.2010.05.029. [34] Qiao YB, Ye Y, Cai TX, Li S, Liu XQ. Anti-fatigue activity of the polysaccharides isolated from Ribes stenocarpum Maxim J Funct Foods. 2022;89:104947. https://doi.org/10.1016/j.jff.2022.104947. [35] Chen DK, Shao HY, Yang L, Hu JM. The bibenzyl derivatives of Dendrobium officinale prevent UV-B irradiation induced photoaging via SIRT3. Nat Prod Bioprospect. 2022;12(1):1–11. https://doi.org/10.1007/s13659-022-00323-6. |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|