Natural Products and Bioprospecting    2023, Vol. 13 Issue (2) : 9-9     DOI: 10.1007/s13659-023-00373-4
Original Article |
Antifungal activity against Fusarium oxysporum of quinolizidines isolated from three controlled-growth Genisteae plants: structure–activity relationship implications
Willy Cely-Veloza1, Lydia Yamaguchi2, Diego Quiroga1, Massuo J. Kato2, Ericsson Coy-Barrera1
1. Bioorganic Chemistry Laboratory, Facultad de Ciencias Básicas y Aplicadas, Universidad Militar Nueva Granada, 250247, Cajicá, Colombia;
2. Institute of Chemistry, University of São Paulo, São Paulo, 05508-000, SP, Brazil
Download: PDF(2093 KB)   HTML ()  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  The Genisteae tribe belongs to the Fabaceae family. The wide occurrence of secondary metabolites, explicitly highlighting the quinolizidine alkaloids (QAs), characterizes this tribe. In the present study, twenty QAs (1-20), including lupanine (1-7), sparteine (8-10), lupanine (11), cytisine and tetrahydrocytisine (12-17), and matrine (18-20)-type QAs were extracted and isolated from leaves of three species (i.e., Lupinus polyphyllus ('rusell' hybrid), Lupinus mutabilis, and Genista monspessulana) belonging to the Genisteae tribe. These plant sources were propagated under greenhouse conditions. The isolated compounds were elucidated by analyzing their spectroscopical data (MS, NMR). The antifungal effect on the mycelial growth of Fusarium oxysporum (Fox) of each isolated QA was then evaluated through the amended medium assay. The best antifungal activity was found to be for compounds 8 (IC50=16.5 μM), 9 (IC50=7.2 μM), 12 (IC50=11.3 μM), and 18 (IC50=12.3 μM). The inhibitory data suggest that some QAs could efficiently inhibit Fox mycelium growth depending on particular structural requirements deduced from structure-activity relationship scrutinies. The identified quinolizidine-related moieties can be involved in lead structures to develop further antifungal bioactives against Fox.
Keywords Fabaceae      Genista      Lupinus      Fusarium oxysporum      Quinolizidines      Antifungals     
Fund:The authors thank UMNG for the financial support.
Corresponding Authors: Willy Cely-Veloza,E-mail:u7700102@unimilitar.edu.co;Ericsson Coy-Barrera,E-mail:ericsson.coy@unimilitar.edu.co     E-mail: u7700102@unimilitar.edu.co;ericsson.coy@unimilitar.edu.co
Issue Date: 18 May 2023
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Willy Cely-Veloza
Lydia Yamaguchi
Diego Quiroga
Massuo J. Kato
Ericsson Coy-Barrera
Trendmd:   
Cite this article:   
Willy Cely-Veloza,Lydia Yamaguchi,Diego Quiroga, et al. Antifungal activity against Fusarium oxysporum of quinolizidines isolated from three controlled-growth Genisteae plants: structure–activity relationship implications[J]. Natural Products and Bioprospecting, 2023, 13(2): 9-9.
URL:  
http://npb.kib.ac.cn/EN/10.1007/s13659-023-00373-4     OR     http://npb.kib.ac.cn/EN/Y2023/V13/I2/9
1 Wink M. Biochemistry of plant secondary metabolism. 2nd ed. Oxford, UK:Wiley-Blackwell; 2010.
2 Forero E, Romero C. Studies of legumes in Colombia. J Colomb Acad Exact, Phys Nat Sci. 2005;25:12-5.
3 Wink M. Evolution of secondary metabolites in legumes (Fabaceae). S Afr J Bot. 2013;89:164-75.
4 Dung DT, Hang DTT, Yen PH, Quang TH, Nhiem NX, Tai BH, et al. Macrocyclic bis-quinolizidine alkaloids from Xestospongia muta. Nat Prod Res. 2019;33:400-6.
5 Daly JW, Garraffo HM, Spande TF, Yeh HJC, Peltzer PM, Cacivio PM, et al. Indolizidine 239Q and quinolizidine 275I. Major alkaloids in two Argentinian bufonid toads (Melanophryniscus). Toxicon. 2008;52:858-70.
6 Fitch RW, Garraffo HM, Spande TF, Yeh HJC, Daly JW. Bioassay-guided isolation of epiquinamide, a novel quinolizidine alkaloid and nicotinic agonist from an Ecuadoran poison frog, Epipedobates tricolor. J Nat Prod. 2003;66:1345-50.
7 Jain P, Garraffo HM, Yeh HJC, Spande TF, Daly JW, Andriamaharavo NR, et al. A 1,4-disubstituted quinolizidine from a Madagascan mantelline frog (Mantella). J Nat Prod. 1996;59:1174-8.
8 Lourenço AM, Máximo P, Ferreira LM, Pereira MMA. Indolizidine and quinolizidine alkaloids structure and bioactivity. In:Atta-ur-Rahman, editor. Studies in natural products chemistry. Amsterdam:Elsevier; 2002, pp 233-98.
9 Ruiz López M, García López P, Rodríguez Macías R, Zamora Natera J, Isaac Virgen M, Múzquiz M. Mexican wild lupines as a source of quinolizidine alkaloids of economic potential. Polibotánica. 2010;29:159-64.
10 Bernal-Alcocer A, Zamora-Natera JF, Virgen-calleros G, Nuño-romero R. In vitro biological activity of Lupinus spp. on phytopathogenic fungi. Rev Mex Fitopatol. 2005;23:140-6.
11 Zamora-Natera F, García-López P, Ruiz-López M, Salcedo-Pérez E. Alkaloid composition in seeds of Lupinus mexicanus (Fabaceae) and antifungal and allelopathic evaluation of the alkaloid extract. Agrociencia. 2008;42:185-92.
12 Wink M. Chemical defense of lupins. Mollusc-repellent properties of quinolizidine alkaloids. Zeitschrift für Naturforsch C. 1984;39:553-8.
13 Wink M. Plant secondary metabolites modulate insect behavior-steps toward addiction? Front Physiol. 2018;9 APR:1-9.
14 Romeo F, Fabroni S, Ballistreri G, Muccilli S, Spina A, Rapisarda P. Characterization and antimicrobial activity of alkaloid extracts from seeds of different genotypes of Lupinus spp. Sustainability. 2018;10:788.
15 Ploetz RC. Fusarium wilt of banana is caused by several pathogens referred to as Fusarium oxysporum f. sp. cubense. Phytopathology. 2006;96:653-6.
16 Ma L-J, Geiser DM, Proctor RH, Rooney AP, O'Donnell K, Trail F, et al. Fusarium pathogenomics. Annu Rev Microbiol. 2013;67:399-416.
17 Gordon TR. Fusarium oxysporum and the Fusarium Wilt Syndrome. Annu Rev Phytopathol. 2017;55:23-39.
18 Zubrod JP, Bundschuh M, Arts G, Brühl CA, Imfeld G, Knäbel A, et al. Fungicides:an overlooked pesticide class? Environ Sci Technol. 2019;53:3347-65.
19 Zhao B, He D, Wang L. Advances in Fusarium drug resistance research. J Glob Antimicrob Resist. 2021;24:215-9.
20 Przybył AK, Kubicki M. Simple and highly efficient preparation and characterization of (-)-lupanine and (+)-sparteine. Tetrahedron. 2011;67:7787-93.
21 Cho YD, Martin RO. 5,6-dehydrolupanine, a new alkaloid, and lupanine from Thermopsis rhombifolia (Nutt) Richards. Can J Chem. 1971;49:265-70.
22 Al-Azizi MM, Al-Said MS, El-Olemy MM, Sattar EA, Khalifa AS. Rhombifoline and 5,6-dehydrolupanine from Anagyrus foetida L. Arch Pharm Res. 1994;17:393-7.
23 Borowiak T, Wolska I, Wysocka W, Brukwicki T. On the structure and spectroscopic properties of two 13-hydroxylupanine epimers. J Mol Struct. 2005;753:27-34.
24 Gołȩlebiewski WM. Application of two-dimensional NMR spectroscopy to the analysis of the proton NMR spectrum of sparteine and its lactams. Magn Reson Chem. 1986;24:105-12.
25 Golebiewskl WM, Spenser ID. Lactams of sparteine. Can J Chem. 1985;63:716-9.
26 Kolanoś R, Wysocka W, Brukwicki T. A comparative study of NMR chemical shifts of sparteine thiolactams and lactams. Tetrahedron. 2003;59:5531-7.
27 Brukwicki T, Wysocka W, Nowak-Wydra B. Lupin alkaloids 6. Stereochemistry of bis-quinolizidine alkaloids with γ-oxo-α, β-enamine system. Can J Chem. 1994;72:193-9.
28 Borowiak T, Kubicki M, Wysocka W, Przybył A. Regio-selective bromination of multiflorine and structures of 3-bromomultiflorine and its molecular complex with succinimide. J Mol Struct. 1998;442:103-13.
29 Rycroft DS, Robins DJ, Sadler IH. Revised assignment of the 1H NMR spectrum of the quinolizidine alkaloid lupinine. Magn Reson Chem. 1992;30:S15-7.
30 Gueyrard D, Tlegenov RT, Steinbruckner S, Perly B, Rollin P. Synthesis of new derivatives of 11-thiolupinine. J Sulfur Chem. 2010;31:493-8.
31 Sagen A-L, Gertsch J, Becker R, Heilmann J, Sticher O. Quinolizidine alkaloids from the curare adjuvant Clathrotropis glaucophylla. Phytochemistry. 2002;61:975-8.
32 Przybył AK, Kubicki M. A comparative study of dynamic NMR spectroscopy in analysis of selected N-alkyl-, N-acyl-, and halogenated cytisine derivatives. J Mol Struct. 2011;985:157-66.
33 Turdybekov KM, Kulakov IV, Turdybekov DM, Mahmutova AS. Conformational states and crystal structure of N-formylcytisine. Russ J Gen Chem. 2017;87:2493-6.
34 Rycroft DS, Robins DJ, Sadler IH. Assignment of the 1H and 13C NMR spectra of the quinolizidine alkaloid anagyrine and determination of its conformation. Magn Reson Chem. 1991;29:936-40.
35 Brukwicki T, Przybyl A, Wysocka W, Sośnicki J. The first quantitative determination of conformational equilibrium in quinolizidine-piperidine alkaloids. Tetrahedron. 1999;55:14501-12.
36 Wysocka W, Przybył A, Brukwicki T. The structure of angustifoline, an alkaloid of Lupinus angustifolius, in solution. Monatsh Chem. 1994;125:1267-72.
37 Wang R, Deng X, Gao Q, Wu X, Han L, Gao X, et al. Sophora alopecuroides L.:an ethnopharmacological, phytochemical, and pharmacological review. J Ethnopharmacol. 2020;248 November 2018:112172.
38 Bai GY, Wang DQ, Ye CH, Liu ML. 1H and 13C chemical shift assignments and stereochemistry of matrine and oxymatrine. Appl Magn Reson. 2002;23:113-21.
39 Azimova SS, Yunusov MS. Natural compounds:alkaloids. New York, NY:Springer; 2013.
40 Lewis JS, Graybill JR. Fungicidal versus Fungistatic:what's in a word? Expert Opin Pharmacother. 2008;9:927-35.
41 Graybill JR, Burgess DS, Hardin TC. Key issues concerning fungistatic versus fungicidal drugs. Eur J Clin Microbiol Infect Dis. 1997;16:42-50.
42 Zamora-Natera JF, Bernal-Alcocer A, Ruiz-López M, Soto-Hernández M, Escalante-Estrada A. Vibrans-Lindemann H. Seed alkaloid profile of Lupinus exaltatus Zucc. (Fabaceae) and the antifungal evaluation of the alkaloid extract and lupanine against phytopathogens. Rev Mex Fitopatol. 2005;23:124-9.
43 Erdemoglu N, Ozkan S, Duran A, Tosun F. GC-MS analysis and antimicrobial activity of alkaloid extract from Genista vuralii. Pharm Biol. 2009;47:81-5.
44 Kwaśniewska PW, Cofta G, Mazela B, Gobakken LR, Przybył AK. Fungistatic activity of quinolizidine and bisquinolizidine alkaloids against A. niger. In:IRG, editor. Proceedings IRG Annual Meeting:The 47th IRG Annual Meeting. Stockholm Sweden:The International Research Group on Wood Protection (IRG/WP); 2016. p. 1-9.
45 El Hamdani N, Filali-Ansari N, Fdil R, El Abbouyi A, El Khyari S. Antifungal activity of the alkaloids extracts from aerial parts of Retama monosperma. Res J Pharm Biol Chem Sci. 2016;7:965-71.
46 Bernal FA, Coy-Barrera E. Composition and antifungal activity of the alkaloidal fraction of Lupinus mirabilis L.:a biochemometrics-based exploration. Molecules. 2022;27:2832.
47 Wink M. Chemical defense of leguminosae are quinolizidine alkaloids part of the antimicrobial defense system of lupins? Zeitschrift fur Naturforsch C. 1984;39:548-52.
48 Küçükboyacı N, Özkan S, Tosun F. Gas chromatographic determination of quinolizidine alkaloids in Genista sandrasica and their antimicrobial activity. Rec Nat Prod. 2012;6:71-4.
49 Pérez-Laínez D, García-Mateos R, San Miguel-Chávez R, Soto-Hernández M, Rodríguez-Pérez E, Kite G. Bactericidal and fungicidal activities of Calia secundiflora (Ort.) Yakovlev. Zeitschrift fur Naturforsch C. 2008;63:653-7.
50 Hammouche-Mokrane N, León-González AJ, Navarro I, Boulila F, Benallaoua S, Martín-Cordero C. Phytochemical profile and antibacterial activity of Retama raetam and R. sphaerocarpa cladodes from Algeria. Nat Prod Commun. 2017;12:1857-60.
51 Erdemoglu N, Ozkan S, Tosun F. Alkaloid profile and antimicrobial activity of Lupinus angustifolius L. alkaloid extract. Phytochem Rev. 2007;6:197-201.
52 Yang X, Zhao B. Antifungal activities of matrine and oxymatrine and their synergetic effects with chlorthalonil. J For Res. 2006;17:323-5.
53 Wu L, Zhou ZT, Zhou YM, Wang HY, Shi LJ. In vitro activity of matrine against Candida albicans biofilms. Shanghai J Stomatol. 2009;18:415-8.
54 Matsuda A, Hachiya N, Kawamura Y. Studies on antifungal activity of variotin. J Antibiot (Tokyo). 1959;12:203-9.
55 Cely-Veloza W, Quiroga D, Coy-Barrera E. Quinolizidine-based variations and antifungal activity of eight Lupinus species grown under greenhouse conditions. Molecules. 2022;27:305.
56 Babushok VI. Chromatographic retention indices in identification of chemical compounds. Trends Anal Chem. 2015;69:98-104.
57 Cárdenas-Laverde D, Barbosa-Cornelio R, Coy-Barrera E. Antifungal activity against Fusarium oxysporum of botanical end-products:an integration of chemical composition and antifungal activity datasets to identify antifungal bioactives. Plants. 2021;10:2563.
58 Marentes-Culma R, Orduz-Díaz LL, Coy-Barrera E. Targeted metabolite profiling-based identification of antifungal 5-n-alkylresorcinols occurring in different cereals against Fusarium oxysporum. Molecules. 2019;24:770.
59 Cole MD. Key antifungal, antibacterial and anti-insect assays-a critical review. Biochem Syst Ecol. 1994;22:837-56.
60 Di Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Robledo CW. InfoStat. http://www.infostat.com.ar/(accessed on 12 January 2023). versión 24. Córdoba, Argentina:Universidad Nacional de Córdoba; 2011.
[1] Bing-Jie Zhang, Jing Wu, Mei-Fen Bao, Fang Wang, Xiang-Hai Cai. Artificial Erythrina Alkaloids from Three Erythrina Plants, E. variegata, E. crista-galli and E. arborescens[J]. Natural Products and Bioprospecting, 2020, 10(2): 57-66.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed