Natural Products and Bioprospecting    2022, Vol. 12 Issue (5) : 28-28     DOI: 10.1007/s13659-022-00351-2
ORIGINAL ARTICLES |
Tissue culture tools for selenium hyperaccumulator Neptunia amplexicaulis for development in phytoextraction
Billy O'Donohue1, Jayeni Hiti-Bandaralage1, Madeleine Gleeson1, Chris O'Brien1, Maggie-Anne Harvey2, Antony van der Ent2, Katherine Pinto Irish2, Neena Mitter1, Alice Hayward1
1 Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia;
2 Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, QLD, Australia
Download: PDF(1609 KB)   HTML ()  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  Neptunia amplexicaulis is an herbaceous legume endemic to the Richmond area in central Queensland, Australia and is one of the strongest known Selenium hyperaccumulators on earth, showing significant potential to be utilised in Se phytoextraction applications. Here a protocol was established for in vitro micropropagation of Se hyperaccumulator N. amplexicaulis using nodal segments from in vitro-germinated seedlings. Shoot multiplication was achieved on Murashige and Skoog (MS) basal media supplemented with various concentrations of 6-Benzylaminopurine (BA) (1.0, 2.0, 3.0 mg L-1) alone or in combination with low levels of Naphthaleneacetic acid (NAA) (0.1, 0.2, 0.3 mg L-1), with 2.0 mg L-1 BA + 0.2 mg L-1 NAA found to be most effective. Elongated shoots were rooted in vitro using NAA, with highest root induction rate of 30% observed at 0.2 mg L-1 NAA. About 95% of the in vitro rooted shoots survived acclimatization. Clonally propagated plantlets were dosed with selenate/selenite solution and assessed for Se tissue concentrations using Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) and found to retain their ability to hyperaccumulate. The protocol developed for this study has potential to be optimised for generating clonal plants of N. amplexicaulis for use in research and phytoextraction industry applications.
Keywords Micropropagation      Hyperaccumulation      Phytoextraction      Selenium      Tissue culture      Neptunia amplexicaulis     
Corresponding Authors: Billy O’Donohue,E-mail:billyodonohue@gmail.com     E-mail: billyodonohue@gmail.com
Issue Date: 12 October 2022
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Billy O'Donohue
Jayeni Hiti-Bandaralage
Madeleine Gleeson
Chris O'Brien
Maggie-Anne Harvey
Antony van der Ent
Katherine Pinto Irish
Neena Mitter
Alice Hayward
Trendmd:   
Cite this article:   
Billy O'Donohue,Jayeni Hiti-Bandaralage,Madeleine Gleeson, et al. Tissue culture tools for selenium hyperaccumulator Neptunia amplexicaulis for development in phytoextraction[J]. Natural Products and Bioprospecting, 2022, 12(5): 28-28.
URL:  
http://npb.kib.ac.cn/EN/10.1007/s13659-022-00351-2     OR     http://npb.kib.ac.cn/EN/Y2022/V12/I5/28
1. Van der Ent A, Baker AJM, Reeves RD, Pollard AJ, Schat H. Hyperaccumulators of metal and metalloid trace elements: facts and fction. Int J Plant Soil Sci. 2013;362:319–34. https://doi.org/10.1007/s11104-012-1287-3.
2. Van der Ent A, Echevarria G, Baker AJM, Morel JL. Agromining: farming for metals: extracting unconventional resources using plants. Mineral Resource Reviews. Cham: Springer; 2018.
3. Chaney RL, Malik M, Li YM, Brown SL, Brewer EP, Angle JS, Baker AJ. Phytoremediation of soil metals. Curr Opin Biotechnol. 1997;8:279–84. https://doi.org/10.1016/S0958-1669(97)80004-3.
4. Pinto Irish K, Harvey M-A, Peter Erskine. Van der Ent A. Root foraging and selenium uptake in theAustralian hyperaccumulator Neptunia amplexicaulis and non-accumulator Neptunia gracilis. Plant Soil. 2021;462:1–15. https://doi.org/10.1007/s11104-021-04843-x.
5. Harvey M-A, Erskine PD, Harris HH, Brown GK, Pilon-Smits EAH, Casey LW, Van der Ent A. Distribution and chemical form of selenium in Neptunia amplexicaulis from Central Queensland. Australia Metallomics. 2020;12:514–27. https://doi.org/10.1039/C9MT00244H.
6. Knott SG, McCray CWR. Two naturally occurring outbreaks of selenosis in Queensland. Aust Vet J. 1959;35:161–5. https://doi.org/10.1111/j.17510813.1959.tb08462.
7. Papp LV, Lu J, Holmgren A, Khanna KK. From selenium to selenoproteins: synthesis, identity, and their role in human health. Antioxid Redox Signal. 2007;9:775–806. https://doi.org/10.1089/ars.2007.1528.
8. He Y, Xiang Y, Zhou Y, Yang Y, Zhang J, Huang H, Tang L. Selenium contamination, consequences and remediation techniques in water and soils: a review. Environ Res Lett. 2018;164:288–301. https://doi.org/10.1016/j.envres.2018.02.037.
9. Roosens N, Verbruggen N, Meerts P, Ximénez-Embún P, Smith JAC. Natural variation in cadmium tolerance and its relationship to metal hyperaccumulation for seven populations of Thlaspi caerulescens from western Europe. Pl Cell Environ. 2003;26:657–1672. https://doi.org/10.1046/j.1365-3040.2003.01084.
10.Huang JW, Cunningham SD. Lead phytoextraction: species variation in lead uptake and translocation. New Phytol. 1996;134:75–84. https://doi.org/10.1111/j.1469-8137.1996.tb01147.
11. Rosenkranz T, Hipfnger C, Ridard C, Puschenreiter M. A nickel phytomining feld trial using Odontarrhena chalcidica and Noccaea goesingensis on an Austrian serpentine soil. J Environ Manag. 2019;242:522–8. https://doi.org/10.1016/j.jenvman.2019.04.073.
12. Smith RH. Chapter 12—in vitro propagation for commercial production of ornamentals. In: Smith RH, editor. Plant tissue cult. San Diego: Academic Press; 2013. p. 127–45.
13. Dhawan V. Applications of biotechnology in forestry and horticulture. New York: Springer; 1989.
14. Hiti-Bandaralage JCA, Hayward A, Mitter N. Micropropagation of Avocado (Persea Americana Mill.). AM J Plant Sci. 2017;8:2898–921. https://doi.org/10.4236/ajps.2017.811197.
15. Murashige T. Plant propagation through tissue cultures. Ann Rev Plant Physiol. 1974;25:135–66. https://doi.org/10.1146/annurev.pp.25.060174.001031.
16. Ikakkar M, Mohan Ram HY. Regeneration of whole plants from tissue cultures of the tropical aquatic legume, Neptunia oleracea. J Plant Physiol. 1986;126:83–91. https://doi.org/10.1016/S0176-1617(86)80220-6.
17. Rout G. Micropropagation of Clitoria ternatea Linn. (Fabaceae)—an important medicinal plant. In Vitro Cell Dev Biol Plant. 2005;41:516–9. https://doi.org/10.1079/IVP2005675.
18. Li JT, Deng DM, Peng GT, Deng JC, Zhang J, Liao B. Successful Micropropagation of the Cadmium Hyperaccumulator Viola Baoshanensis (Violaceae). Int J Phytoremediation. 2010;12:61–771. https://doi.org/10.1080/15226510903390486.
19. Bidwell SD, Pederick JW, Sommer-Knudsen J, Woodrow IE. Micropropagation of the nickel hyperaccumulator, Hybanthus foribundus (Family Violaceae). Plant Cell Tissue Organ Cult. 2001;67:89–92. https://doi.org/10.1023/A:1011614202504.
20. Larkin PJ, Scowcroft WR. Somaclonal variation—a novel source of variability from cell cultures for plant improvement. Theor Appl Genet. 1981;60(4):197–214. https://doi.org/10.1007/BF0234254.
21. Puhan P, Rath SP. In vitro micropropagation of Desmodium gangeticum (L.) DC (Fam-Fabaceae): a medicinal legume through axillary bud multiplication. Pak J Biol Sci. 2012;15:477–83. https://doi.org/10.3923/pjbs.2012.477.483.
22. Guignardi ZS. Studies on selenium hyperaccumulator Stanleya pinnata and nonaccumulator Stanleya elata (Brassicaceae): functional characterization of selenate transporter SULTR1;2 in yeast and development of a micropropagation protocol, Phd Theses, Colorado state university, 2017.
23. Myers JR, Grosser JW, Taylor NL, Collins GB. Genotype-dependent whole plant regeneration from protoplasts of red clover (Trifolium pratense L.). Plant Cell Tiss Organ Cult. 1989;19:113–27. https://doi.org/10.1007/BF00035811.
24. Vidoz ML, Quesenberry KH, Real D, Gallo M. Plant regeneration of Lotononis bainesii Baker (Fabaceae) through cotyledon and leaf culture. Afr J Biotechnol. 2012;1:9724–31. https://doi.org/10.5897/AJB11.2680.
25. Hiti-Bandaralage JCA, Hayward A, O’Brien C, Beveridge C, Mitter N. Acclimatization of micropropagated mature avocado. Acta Hortic. 2018;1224:13–20. https://doi.org/10.17660/ActaHortic.2018.1224.3.
26. Hazarika BN. Morpho-physiological disorders in in vitro culture of plants. Sci Hortic. 2006;108:105–20. https://doi.org/10.1016/j.scienta.2006.01.038.
27. Torres KC. Application of tissue culture techniques to horticultural crops. Tissue culture techniques for horticultural crops. Boston: Springer; 1989. p. 66–9.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed