Natural Products and Bioprospecting    2022, Vol. 12 Issue (4) : 26-26     DOI: 10.1007/s13659-022-00348-x
Original Article |
Cyclic heptapeptides with metal binding properties isolated from the fungus Cadophora malorum from Antarctic soil
Guidmar C. Donalle1,2, María Martha Martorell3, Gastón E. Siless1,2, Lucas Ruberto3, Gabriela M. Cabrera1,2
1. Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Universidad de Buenos Aires, Buenos Aires, Argentina;
2. Unidad de Microanálisis y Métodos Físicos Aplicados a la Química Orgánica (UMYMFOR), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina;
3. Instituto Antártico Argentino, Instituto Nanobiotec, CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
Download: PDF(1276 KB)   HTML ()  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  The Antarctic fungus Cadophora malorum produces previously undescribed cyclic heptapeptides (cadophorin A and B) containing an anthranilic acid residue. The planar structure of these peptides was determined by high-resolution mass spectrometry combined with extensive 1D and 2D NMR spectroscopy. The absolute configuration of the amino acids was determined by Marfey's method, with HPLC analysis of FDVA (Nα-(2,4-dinitro-5-fluorphenyl)-L-valinamide) derivatives making use of a PFP column. Remarkably, cadophorin 2 possesses both the uncommon D-Ile and D-allo-Ile in its structure. The peptides have metal binding properties as shown by LCMS with post column addition of metal salt solutions. These results were supported by DFT calculations.
Keywords Cyclic peptide      Cadophora malorum      Metal binding     
Fund:The authors thank Universidad de Buenos Aires[UBACYT 2018-100246, PDE-48-2020], CONICET[PIP 112 20200101898] and ANPCyT[PICT 2018-0930, PICT E 2018-0031] for partial financial support.
Corresponding Authors: Lucas Ruberto,E-mail:luruberto@gmail.com;Gabriela M.Cabrera,E-mail:gabyc@qo.fcen.uba.ar     E-mail: luruberto@gmail.com;gabyc@qo.fcen.uba.ar
Issue Date: 12 August 2022
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Guidmar C. Donalle
María Martha Martorell
Gastón E. Siless
Lucas Ruberto
Gabriela M. Cabrera
Trendmd:   
Cite this article:   
Guidmar C. Donalle,María Martha Martorell,Gastón E. Siless, et al. Cyclic heptapeptides with metal binding properties isolated from the fungus Cadophora malorum from Antarctic soil[J]. Natural Products and Bioprospecting, 2022, 12(4): 26-26.
URL:  
http://npb.kib.ac.cn/EN/10.1007/s13659-022-00348-x     OR     http://npb.kib.ac.cn/EN/Y2022/V12/I4/26
1. Yurchenko AN, Girich EV, Yurchenko EA. Metabolites of marine sediment-derived fungi:actual trends of biological activity studies. Mar Drugs. 2021;19:88.
2. Carroll AR, Copp BR, Davis RA, Keyzers RA, Prinsep MR. Marine natural products. Nat Prod Rep. 2021;38:362-413.
3. Shi T, Yu YY, Dai JJ, Zhang YT, Hu WP, Zheng L, Shi DY. New polyketides from the antarctic fungus Pseudogymnoascus sp. HSX2#-11. Mar Drugs. 2021;19:168.
4. Vaca I, Chávez R. Bioactive compounds produced by Antarctic filamentous fungi. In:Rosa LH, editor. Fungi of Antarctica. Diversity, ecology and biotechnological applications. Heidelberg:Springer; 2019. p. 265-83.
5. Index Fungorum. http://www.indexfungorum.org/.
6. Iliushin VA. First find of Cadophora antarctica Rodr.-Andrade, Stchigel, Mac Cormack&Cano in the Arctic. Czech Polar Rep. 2020;10:147-52.
7. Rusman Y, Held BW, Blanchette RA, Wittlin S, Salomon CE. Soudanones A-G:Antifungal isochromanones from the ascomycetous fungus Cadophora sp. isolated from an iron mine. J Nat Prod. 2015;78:1456-60.
8. Almeida C, Eguereva E, Kehraus S, Siering C, König GM. Hydroxylated sclerosporin derivatives from the marine-derived fungus Cadophora malorum. J Nat Prod. 2010;73:476-8.
9. Rusman Y, Held BW, Blanchette RA, He Y, Salomon CE. Cadopherone and colomitide polyketides from Cadophora wood-rot fungi associated with historic expedition huts in Antarctica. Phytochem. 2018;148:1-10.
10. Patil RH, Luptáková D, Havlíček V. Infection metallomics for critical care in the post-COVID era. Mass Spectrom Rev. 2021.. Patil RH, Luptáková D, Havlíček V. Infection metallomics for critical care in the post-COVID era. Mass Spectrom Rev. 2021. https://doi.org/10.1002/mas.21755.
11. Butler M, Cabrera GM. A mass spectrometry-based method for differentiation of positional isomers of monosubstituted pyrazine N-oxides using metal ion complexes. J Mass Spectrom. 2015;50:136-44.
12. Cirigliano AM, Rodriguez MA, Gagliano ML, Bertinetti BV, Godeas AM, Cabrera GM. Liquid chromatography coupled to different atmospheric pressure ionization sources-quadrupole-time-of-flight mass spectrometry and post-column addition of metal salt solutions as a powerful tool for the metabolic profiling of Fusarium oxysporum. J Chromatogr A. 2016;1439:97-111.
13. Kempen EC, Brodbelt JS. Screening metal binding selectivities of macrocycle mixtures by HPLC-ESI-MS and post-column reactions. Anal Chem. 2001;73:384-90.
14. Tsugawa H, Cajka T, Kind T, Ma Y, Higgins B, Ikeda K, Kanazawa M, Vander GJ, Fiehn O, Arita M. MS-DIAL:data independent MS/MS deconvolution for comprehensive metabolome analysis. Nat Methods. 2015;12:523-6.
15. Lawrence RG, Rodney MC. Metal complexes of synthetic cyclic peptides. Polyhedron. 2018;153:1-23.
16. Chermahini AN, Chermahini ZJ. Comparing the ion affinity of two ionophores:theoretical study of alkali earth metal ion-nano tubular cyclic peptide complexes. J Mol Liq. 2016;214:101-10.
17. Song Q, Cheng Z, Kariuki M, Hall SCL, Hill SK, Rho JY, Perrier S. Molecular self-assembly and supramolecular chemistry of cyclic peptides. Chem Rev. 2021;121:13936-95.
18. Zheng L, Marcozzi A, Gerasimov JY, Herrmann A. Conformationally constrained cyclic peptides:powerful scaffolds for asymmetric catalysis. Angew Chem Int Ed. 2014;53:7599-603.
19. Tabudravu JN, Jaspars M, Morris LA, Kettenes-van den Bosch JJ, Smith N. Two distinct conformers of the cyclic heptapeptide phakellistatin 2 isolated from the Fijian marine sponge Stylotella aurantium. J Org Chem. 2002;67:8593-601.
20. Bhushan R, Brückner H. Marfey's reagent for chiral amino acid analysis:a review. Amino Acids. 2004;27:231-47.
21. Zhou T, Katsuragawa M, Xing T, Fukaya K, Okuda T, Tokiwa T, Tashiro E, Imoto M, Oku N, Urabe D, Igarashi Y. Cyclopeptides from the mushroom pathogen fungus Cladobotryum varium. J Nat Prod. 2021;84:327-38.
22. Finking R, Marahiel MA. Biosynthesis of nonribosomal peptides. Annu Rev Microbiol. 2004;58:453-88.
23. Bevan K, Davies JS, Hassall CH, Phillips DAS. D-Isoleucine, an exceptional amino-acid residue of the antibiotic monamycin. J Chem Soc Chem Commun. 1969;21:1246.
24. Davies JS, Foley MH, Hassall CH, Arroyo V. The biosynthetic origin of D-Isoleucine in the monamycins. J Chem Soc Chem Commun. 1973;20:782-3.
25. Matsuda K, Kuranaga T, Sano A, Ninomiya A, Takada K, Wakimoto T. The revised structure of the cyclic octapeptide surugamide A. Chem Pharm Bull. 2019;67:476-80.
26. Wen W, Huanqin D, Li B, Biao R, Jingcai L, Yuanming L, Liangdong G, Lixin Z, Hongwei L. Isolation and structural elucidation of proline-containing cyclopentapeptides from an endolichenic Xylaria sp. J Nat Prod. 2011;74:1303-8.
27. Dalsgaard PW, Ostenfeld TL, Frydenvang K, Christophersen C. Psychrophilin A and cycloaspeptide D, novel cyclic peptides from the psychrotolerant fungus Penicillium ribeum. J Nat Prod. 2004;67:878-81.
28. Min C, Chang-Lun S, Xiu-Mei F, Chui-Jian K, Zhi-Gang S, Chang-Yun W. Lumazine peptides penilumamides B-D and the cyclic pentapeptide asperpeptide A from a gorgonian-derived Aspergillus sp. fungus. J Nat Prod. 2014;77:1601-6.
29. Zheng H, Cooper DR, Porebski PJ, Shabalin IG, Handing KB, Minor W. CheckMyMetal:a macromolecular metal-binding validation tool. Acta Cryst. 2017;D73:223-33.
30. Dischler NM, Xu L, Li Y, Nichols CB, Alspaugh JA, Bills GF, Gloer JB. Wortmannin and wortmannine analogues from an undescribed Niesslia sp. J Nat Prod. 2019;82:532-8.
31. Ratnayake R, Fremlin LJ, Lacey E, Gill JH, Capon RJ. Acremolides A-D, Lipodepsipeptides from an Australian marine-derived fungus Acremonium sp. J Nat Prod. 2008;71:403-8.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed