Original Article |
|
|
|
|
|
Cyclic heptapeptides with metal binding properties isolated from the fungus Cadophora malorum from Antarctic soil |
Guidmar C. Donalle1,2, María Martha Martorell3, Gastón E. Siless1,2, Lucas Ruberto3, Gabriela M. Cabrera1,2 |
1. Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Universidad de Buenos Aires, Buenos Aires, Argentina; 2. Unidad de Microanálisis y Métodos Físicos Aplicados a la Química Orgánica (UMYMFOR), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina; 3. Instituto Antártico Argentino, Instituto Nanobiotec, CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina |
|
|
Abstract The Antarctic fungus Cadophora malorum produces previously undescribed cyclic heptapeptides (cadophorin A and B) containing an anthranilic acid residue. The planar structure of these peptides was determined by high-resolution mass spectrometry combined with extensive 1D and 2D NMR spectroscopy. The absolute configuration of the amino acids was determined by Marfey's method, with HPLC analysis of FDVA (Nα-(2,4-dinitro-5-fluorphenyl)-L-valinamide) derivatives making use of a PFP column. Remarkably, cadophorin 2 possesses both the uncommon D-Ile and D-allo-Ile in its structure. The peptides have metal binding properties as shown by LCMS with post column addition of metal salt solutions. These results were supported by DFT calculations.
|
Keywords
Cyclic peptide
Cadophora malorum
Metal binding
|
Fund:The authors thank Universidad de Buenos Aires[UBACYT 2018-100246, PDE-48-2020], CONICET[PIP 112 20200101898] and ANPCyT[PICT 2018-0930, PICT E 2018-0031] for partial financial support. |
Corresponding Authors:
Lucas Ruberto,E-mail:luruberto@gmail.com;Gabriela M.Cabrera,E-mail:gabyc@qo.fcen.uba.ar
E-mail: luruberto@gmail.com;gabyc@qo.fcen.uba.ar
|
Issue Date: 12 August 2022
|
|
|
1. Yurchenko AN, Girich EV, Yurchenko EA. Metabolites of marine sediment-derived fungi:actual trends of biological activity studies. Mar Drugs. 2021;19:88. 2. Carroll AR, Copp BR, Davis RA, Keyzers RA, Prinsep MR. Marine natural products. Nat Prod Rep. 2021;38:362-413. 3. Shi T, Yu YY, Dai JJ, Zhang YT, Hu WP, Zheng L, Shi DY. New polyketides from the antarctic fungus Pseudogymnoascus sp. HSX2#-11. Mar Drugs. 2021;19:168. 4. Vaca I, Chávez R. Bioactive compounds produced by Antarctic filamentous fungi. In:Rosa LH, editor. Fungi of Antarctica. Diversity, ecology and biotechnological applications. Heidelberg:Springer; 2019. p. 265-83. 5. Index Fungorum. http://www.indexfungorum.org/. 6. Iliushin VA. First find of Cadophora antarctica Rodr.-Andrade, Stchigel, Mac Cormack&Cano in the Arctic. Czech Polar Rep. 2020;10:147-52. 7. Rusman Y, Held BW, Blanchette RA, Wittlin S, Salomon CE. Soudanones A-G:Antifungal isochromanones from the ascomycetous fungus Cadophora sp. isolated from an iron mine. J Nat Prod. 2015;78:1456-60. 8. Almeida C, Eguereva E, Kehraus S, Siering C, König GM. Hydroxylated sclerosporin derivatives from the marine-derived fungus Cadophora malorum. J Nat Prod. 2010;73:476-8. 9. Rusman Y, Held BW, Blanchette RA, He Y, Salomon CE. Cadopherone and colomitide polyketides from Cadophora wood-rot fungi associated with historic expedition huts in Antarctica. Phytochem. 2018;148:1-10. 10. Patil RH, Luptáková D, Havlíček V. Infection metallomics for critical care in the post-COVID era. Mass Spectrom Rev. 2021.. Patil RH, Luptáková D, Havlíček V. Infection metallomics for critical care in the post-COVID era. Mass Spectrom Rev. 2021. https://doi.org/10.1002/mas.21755. 11. Butler M, Cabrera GM. A mass spectrometry-based method for differentiation of positional isomers of monosubstituted pyrazine N-oxides using metal ion complexes. J Mass Spectrom. 2015;50:136-44. 12. Cirigliano AM, Rodriguez MA, Gagliano ML, Bertinetti BV, Godeas AM, Cabrera GM. Liquid chromatography coupled to different atmospheric pressure ionization sources-quadrupole-time-of-flight mass spectrometry and post-column addition of metal salt solutions as a powerful tool for the metabolic profiling of Fusarium oxysporum. J Chromatogr A. 2016;1439:97-111. 13. Kempen EC, Brodbelt JS. Screening metal binding selectivities of macrocycle mixtures by HPLC-ESI-MS and post-column reactions. Anal Chem. 2001;73:384-90. 14. Tsugawa H, Cajka T, Kind T, Ma Y, Higgins B, Ikeda K, Kanazawa M, Vander GJ, Fiehn O, Arita M. MS-DIAL:data independent MS/MS deconvolution for comprehensive metabolome analysis. Nat Methods. 2015;12:523-6. 15. Lawrence RG, Rodney MC. Metal complexes of synthetic cyclic peptides. Polyhedron. 2018;153:1-23. 16. Chermahini AN, Chermahini ZJ. Comparing the ion affinity of two ionophores:theoretical study of alkali earth metal ion-nano tubular cyclic peptide complexes. J Mol Liq. 2016;214:101-10. 17. Song Q, Cheng Z, Kariuki M, Hall SCL, Hill SK, Rho JY, Perrier S. Molecular self-assembly and supramolecular chemistry of cyclic peptides. Chem Rev. 2021;121:13936-95. 18. Zheng L, Marcozzi A, Gerasimov JY, Herrmann A. Conformationally constrained cyclic peptides:powerful scaffolds for asymmetric catalysis. Angew Chem Int Ed. 2014;53:7599-603. 19. Tabudravu JN, Jaspars M, Morris LA, Kettenes-van den Bosch JJ, Smith N. Two distinct conformers of the cyclic heptapeptide phakellistatin 2 isolated from the Fijian marine sponge Stylotella aurantium. J Org Chem. 2002;67:8593-601. 20. Bhushan R, Brückner H. Marfey's reagent for chiral amino acid analysis:a review. Amino Acids. 2004;27:231-47. 21. Zhou T, Katsuragawa M, Xing T, Fukaya K, Okuda T, Tokiwa T, Tashiro E, Imoto M, Oku N, Urabe D, Igarashi Y. Cyclopeptides from the mushroom pathogen fungus Cladobotryum varium. J Nat Prod. 2021;84:327-38. 22. Finking R, Marahiel MA. Biosynthesis of nonribosomal peptides. Annu Rev Microbiol. 2004;58:453-88. 23. Bevan K, Davies JS, Hassall CH, Phillips DAS. D-Isoleucine, an exceptional amino-acid residue of the antibiotic monamycin. J Chem Soc Chem Commun. 1969;21:1246. 24. Davies JS, Foley MH, Hassall CH, Arroyo V. The biosynthetic origin of D-Isoleucine in the monamycins. J Chem Soc Chem Commun. 1973;20:782-3. 25. Matsuda K, Kuranaga T, Sano A, Ninomiya A, Takada K, Wakimoto T. The revised structure of the cyclic octapeptide surugamide A. Chem Pharm Bull. 2019;67:476-80. 26. Wen W, Huanqin D, Li B, Biao R, Jingcai L, Yuanming L, Liangdong G, Lixin Z, Hongwei L. Isolation and structural elucidation of proline-containing cyclopentapeptides from an endolichenic Xylaria sp. J Nat Prod. 2011;74:1303-8. 27. Dalsgaard PW, Ostenfeld TL, Frydenvang K, Christophersen C. Psychrophilin A and cycloaspeptide D, novel cyclic peptides from the psychrotolerant fungus Penicillium ribeum. J Nat Prod. 2004;67:878-81. 28. Min C, Chang-Lun S, Xiu-Mei F, Chui-Jian K, Zhi-Gang S, Chang-Yun W. Lumazine peptides penilumamides B-D and the cyclic pentapeptide asperpeptide A from a gorgonian-derived Aspergillus sp. fungus. J Nat Prod. 2014;77:1601-6. 29. Zheng H, Cooper DR, Porebski PJ, Shabalin IG, Handing KB, Minor W. CheckMyMetal:a macromolecular metal-binding validation tool. Acta Cryst. 2017;D73:223-33. 30. Dischler NM, Xu L, Li Y, Nichols CB, Alspaugh JA, Bills GF, Gloer JB. Wortmannin and wortmannine analogues from an undescribed Niesslia sp. J Nat Prod. 2019;82:532-8. 31. Ratnayake R, Fremlin LJ, Lacey E, Gill JH, Capon RJ. Acremolides A-D, Lipodepsipeptides from an Australian marine-derived fungus Acremonium sp. J Nat Prod. 2008;71:403-8. |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|