Natural Products and Bioprospecting    2022, Vol. 12 Issue (4) : 22-22     DOI: 10.1007/s13659-022-00341-4
Original Article |
α-Glucosidase inhibitive diarylheptanoids from Ottelia acuminata var. acuminata, a traditional vegetable of Bai Nationality in Yunnan
Hong-Xing Liu1,2, Jun-Zeng Ma1, Yan-Song Ye1, Jian-Jun Zhao1, Shi-Jie Wan1, Xin-Yue Hu1,2, Gang Xu1
1. State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China;
2. University of Chinese Academy of Sciences, Beijing, 100049, China
Download: PDF(1718 KB)   HTML ()  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  Diabetes is an urgent health issue characterized by ethnic and regional variations, and is inseparable from the different dietary habits. It is worthy to note that the incidence of diabetes in Bai nationality has been reported to be much lower than Han in China. As a daily vegetable of Bai, the phytochemical and antidiabetic study of Ottelia acuminata var. acuminata had not been carried out. In this study, 41 metabolites with diverse diarylheptanoid (six new ones, Otteacumienes A-F), flavone, sesquiterpenoid, coumarin, lignan, polyacetylene, and alkaloid skeletons were characterized from O. acuminata var. acuminata. Among them, the racemic nature of 3 was characterized by chiral resolution and calculated ECD methods. The biological study revealed diarylheptanoids showed significant α-glucosidase inhibitory activities with 5 as the most effective one (60-fold stronger than acarbose). Molecular docking studies indicated that these structures have different binding cavities with acarbose. This study demonstrated that O. acuminata var. acuminata might correlated with the low incidence diabetes of Bai and the diarylheptanoids may have potential therapeutic value for diabetes mellitus.
Keywords Ottelia acuminata var. acuminata      Bai nationality      Vegetable      Diarylheptanoids      α-glucosidase     
Fund:This study was supported financially by the Second Tibetan Plateau Scientific Expedition and Research program (2019QZKK0502) and State Key Laboratory of Phytochemistry and Plant Resources in West China (E0230211Z1 and P2019-ZZ05).
Corresponding Authors: Gang Xu,E-mail:xugang008@mail.kib.ac.cn     E-mail: xugang008@mail.kib.ac.cn
Issue Date: 12 August 2022
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Hong-Xing Liu
Jun-Zeng Ma
Yan-Song Ye
Jian-Jun Zhao
Shi-Jie Wan
Xin-Yue Hu
Gang Xu
Trendmd:   
Cite this article:   
Hong-Xing Liu,Jun-Zeng Ma,Yan-Song Ye, et al. α-Glucosidase inhibitive diarylheptanoids from Ottelia acuminata var. acuminata, a traditional vegetable of Bai Nationality in Yunnan[J]. Natural Products and Bioprospecting, 2022, 12(4): 22-22.
URL:  
http://npb.kib.ac.cn/EN/10.1007/s13659-022-00341-4     OR     http://npb.kib.ac.cn/EN/Y2022/V12/I4/22
1. International Diabetes Federation (IDF). IDF Diabetes Atlas, 10th edn.(Brussels, Belgium, 2021).<br />
2. Dahlen AD, Dashi G, Maslov I, Attwood MM, Jonsson J, Trukhan V, Schioth HB. Trends in antidiabetic drug discovery:FDA approved drugs, New Drugs in clinical trials and global sales. Front Pharmacol. 2022;12:807548.<br />
3. Hossain U, Das AK, Ghosh S, Sil PC. An overview on the role of bioactive alpha-glucosidase inhibitors in ameliorating diabetic complications. Food Chem Toxicol. 2020;145:111738.<br />
4. Zhang LH, Chen QY, Li L, Kwong JSW, Jia PL, Zhao PJ, Wang W, Zhou X, Zhang MM, Sun X. Alpha-glucosidase inhibitors and hepatotoxicity in type 2 diabetes:a systematic review and meta-analysis. Sci Rep-Uk. 2016;6:32649.<br />
5. Li YZ, Teng D, Shi XG, Qin GJ, Qin YF, Quan HB, Shi BY, Sun H, Ba JM, Chen B, Du JL, He LJ, Lai XY, Li YB, Chi HY, Liao EY, Liu C, Liu LB, Tang XL, Tong NW, Wang GX, Zhang JA, Wang YM, Xue YM, Yan L, Yang J, Yang LH, Yao YL, Ye Z, Zhang Q, Zhang LH, Zhu J, Zhu M, Ning G, Mu YM, Zhao JJ, Teng WP, Shan ZY. Prevalence of diabetes recorded in mainland China using 2018 diagnostic criteria from the American Diabetes Association:national cross sectional study. BMJ. 2020;369:m997.<br />
6. Mei ZC, Ju HL, Lan L, Long CW, Bo LJ, Li M, Le C. Comparative study of prevalence and influencing factors of diabetes mellitus between Han and Bai ethnic groups in rural areas of Yunnan province. J Kunming Med Univ. 2021;42:33-7.<br />
7. Zhang Z, Lee C, Gao Z, Li X. Basic research on ancient Bai character recognition based on mobile APP. Wirel Commu Mob Comput. 2021;2021:4059784.<br />
8. Wu QJ. Textual research on reality and titles of plants. Beijing:China Publishing House; 1963. p. 443.<br />
9. Wu ZY. Flora Reipublicae Popularis Sinicae. Science Press:Beijing; 1992. vol. 8, pp 160.<br />
10 Tu CY, Lin H, Wang Q, Wu LJ, Yang YL, Zou LJ, Wu QG. The complete chloroplast genome of <i>Ottelia acuminate</i> var. crispa, an endangered aquatic herb with extremely narrow distribution. Mitochondrlal DNA B. 2021;6:1071-2.<br />
11 Lu YH, Tian CR, Gao CY, Wang XY, Yang X, Chen YX, Liu ZZ. Phenolic profile, antioxidant and enzyme inhibitory activities of ottelia acuminata, an endemic plant from southwestern China. Ind Crop Prod. 2019;138:111423.<br />
12 Ebob OT, Babiaka SB, Ntie-Kang F. Natural products as potential lead compounds for drug discovery against SARS-CoV-2. Nat Prod Bioprospect. 2021;11:611-28.<br />
13 Lin Y, Peng XG, Ruan HL. Diarylheptanoids from the fresh pericarps of Juglans hopeiensis. Fitoterapia. 2019;136:104265.<br />
14 Cheng XL, Li HX, Chen J, Wu P, Xue JH, Zhou ZY, Xia NH, Wei XY. Bioactive diarylheptanoids from alpinia coriandriodora. Nat Prod Bioprospect. 2021;11:63-72.<br />
15 Hoye TR, Ayyad SEN, Beckord HJ, Brown SG. New diarylheptanoids and a hydroxylated ottelione from <i>Ottelia alismoides</i>. Nat Prod Commun. 2013;8:351-8.<br />
16 Costantino V, Fattorusso E, Mangoni A, Perinu C, Teta R, Panza E, Ianaro A. Tedarenes A and B:structural and stereochemical analysis of two new strained cyclic diarylheptanoids from the marine sponge Tedania ignis. J Org Chem. 2012;77:6377-83.<br />
17 Li XG, Zhang LY, Zhang X, Yang GP. Synthesis of trans-cinnsmic acid catalyzed by porous organic framework solidbase. Spec Petrochem. 2021;38:23-7.<br />
18 Abd El-kader AM, Mahmoud BK, Hajjar D, Mohamed MFA, Hayallah AM, Abdelmohsen UR. Antiproliferative activity of new pentacyclic triterpene and a saponin from <i>Gladiolus segetum</i> Ker-Gawl corms supported by molecular docking study. Rsc Adv. 2020;10:22730-41.<br />
19 Zhu HL, Wang ZZ, Zheng BZ, Qi Z, Zheng X, Li PY, Wang F, Liu JP. Chemical constituents from berries of Physalis pubescens. Chin Tradit Herb Drugs. 2016;47:732-5.<br />
20 Bankova VS. Synthesis of natural esters of substituted cinnamic-acids. J Nat Prod. 1990;53:821-4.<br />
21 Uesawa Y, Sakagami H, Okudaira N, Toda K, Takao K, Kagaya H, Sugita Y. Quantitative structure-cytotoxicity relationship of cinnamic acid phenetyl esters. Anticancer Res. 2018;38:817-23.<br />
22 Lotti C, Piccinelli AL, Arevalo C, Ruiz I, De Castro GMM, De Sa LFR, Tessis AC, Ferreira-Pereira A, Rastrelli L. Constituents of Hondurian Propolis with inhibitory effects on Saccharomyces cerevisiae multidrug resistance protein Pdr5p. J Agric Food Chem. 2012;60:10540-5.<br />
23 Mahajan RP, Patil UK, Patil SL. A facile microwave assisted synthesis and antimicrobial activities of naturally occurring (<i>E</i>)-cinnamyl (<i>E</i>)-cinnamates and (<i>E</i>)-aryl cinnamates. Indian J Chem B. 2007;46:1459-65.<br />
24 Kim SY, Yun-Choi HS. Platelet anti-aggregating activities of bupleurumin from the aerial parts of <i>Bupleurum falcatum</i>. Arch Pharm Res. 2007;30:561-4.<br />
25 Ashour ML, El-Readi MZ, Tahrani A, Eid SY, Wink M. A novel cytotoxic aryltetraline lactone from <i>Bupleurum marginatum</i>(Apiaceae). Phytochem Lett. 2012;5:387-92.<br />
26 Lee SH, Ban HS, Kim YP, Kim BK, Cho SH, Ohuchi K, Shin KH. Lignans from Acanthopanax chiisanensis having an inhibitory activity on prostaglandin E-2 production. Phytother Res. 2005;19:103-6.<br />
27 Das B, Rao SP, Srinivas KVNS, Yadav JS. Lignans, biflavones and taxoids from Himalayan Taxus-Baccata. Phytochemistry. 1995;38:715-7.<br />
28 Harkar S, Razdan TK, Waight ES. Steroids, chromone and coumarins from Angelica-Officinalis. Phytochemistry. 1984;23:419-26.<br />
29 Bhan MK, Raj S, Nayar MNS, Handa KL. Isoprenylcoumarins from Boenninghausenia-Albiflora. Phytochemistry. 1973;12:3010-1.<br />
30 Atkinson E, Boyd DR, Grundon MF. Coumarins of Skimmia-Japonica. Phytochemistry. 1974;13:853-5.<br />
31 Ito C, Furukawa H. Three new coumarins from Murraya-Exotica. Heterocycles. 1987;26:1731-4.<br />
32 Wu TS, Liou MJ, Kuoh CS. Coumarins of the flowers of Murraya-Paniculata. Phytochemistry. 1989;28:293-4.<br />
33 Aslam M, Ali M, Dayal R, Javed K. Coumarins and a naphthyl labdanoate diarabinoside from the fruits of Peucedanum grande C. B Clarke. Z Naturforsch C. 2012;67:580-6.<br />
34 Stevenson PC, Simmonds MSJ, Yule MA, Veitch NC, Kite GC, Irwin D, Legg M. Insect antifeedant furanocoumarins from Tetradium daniellii. Phytochemistry. 2003;63:41-6.<br />
35 Abel G, Erdelmeier C, Meier B, Sticher O. Isopimpinellin, a furocoumarin from Heracleum-Sphondylium with chromosome damaging activity. Planta Med. 1985;51:250-2.<br />
36 Yamauchi Y, Okuyama T, Ishii T, Okumura T, Ikeya Y, Nishizawa M. Sakuranetin downregulates inducible nitric oxide synthase by affecting interleukin-1 receptor and CCAAT/enhancer-binding protein beta. J Nat Med. 2019;73:353-68.<br />
37 Hahm ER, Park S, Yang CH. 7,8-Dihydroxyflavanone as an inhibitor for Jun-Fos-DNA complex formation and its cytotoxic effect on cultured human cancer cells. Nat Prod Res. 2003;17:431-6.<br />
38 Balza F, Jamieson L, Towers GHN. Chemical-constituents of the aerial parts of Artemisia-Dracunculus. J Nat Prod. 1985;48:339-40.<br />
39 Han MS, Lee IK, Kim YS, Kim JT, Choe KR, Yun BS. Flavonoids from Propolis inhibit DNA single strand breakage by the Fenton reaction. J Korean Soc Appl Bi. 2010;53:512-5.<br />
40 Shi SH, Zhang CN, Liu AJ, Li H, Bi KS, Jia Y. Isolation and identification of chemical constituents from alpinia oxyphylla. Chin J Exp Tradit Med Formulae. 2013;19:97-100.<br />
41 Benabderrahmane W, Amrani A, Benaissa O, Lores M, Lamas J, de Miguel T, Benayache F, Benayache S. Chemical constituents, in vitro antioxidant and antimicrobial properties of ethyl acetate extract obtained from Cytisus triflorus l'Her. Nat Prod Res. 2020;34:1586-90.<br />
42 Jayaprakasha GK, Negi PS, Sikder S, Rao LJ, Sakariah KK, Naturforsch Z. Antibacterial activity of <i>Citrus reticulata</i> peel extracts. Z Naturforsch C. 2000;55:1030-4.<br />
43 Murata K, Iida D, Ueno Y, Samukawa K, Ishizaka T, Kotake T, Matsuda H. Novel polyacetylene derivatives and their inhibitory activities on acetylcholinesterase obtained from Panax ginseng roots. Nat Med Tokyo Jpn. 2017;71:114-22.<br />
44 Wei F, Dong WX, Min CH, Guang SL, Ling Y, Feng NS. Chemical analysis of the South China Sea spine body sponge <i>Acanthella cavernosa</i>. J Pharm Pract. 2016;34:138-41.<br />
45 Gutierrez-Lugo MT, Woldemichael GM, Singh MP, Suarez PA, Maiese WM, Montenegro G, Timmermann BN. Isolation of three new naturally occurring compounds from the culture of Micromonospora sp P1068. Nat Prod Res. 2005;19:645-52.<br />
46 Vusovich OV, Tchaikovskaya ON, Sokolova IV, Vasil'eva NY. Experimental and quantum-chemical study of electronically excited states of protolytic Isovanillin Species. Russ Phys J. 2014;57:86-94.<br />
47 Brezani V, Lelakova V, Hassan STS, Berchova-Bimova K, Novy P, Kloucek P, Marsik P, Dall'Acqua S, Hosek J, Smejkal K. Anti-infectivity against Herpes simplex virus and selected microbes and anti-inflammatory activities of compounds isolated from <i>Eucalyptus globulus</i> Labill. Viruses-Basel. 2018;10:306.<br />
48 Hu GL, Peng XR, Dong D, Nian Y, Gao Y, Wang XY, Hong DF, Qiu MH. New ent-kaurane diterpenes from the roasted arabica coffee beans and molecular docking to alpha-glucosidase. Food Chem. 2021;345:128823.<br />
49 He XF, Geng CA, Huang XY, Ma YB, Zhang XM, Chen JJ. Chemical constituents from Mentha haplocalyx Briq.(<i>Mentha canadensis</i> L.) and their α-glucosidase inhibitory activities. Nat Prod Bioprospect. 2019;9:223-9.<br />
50 Xu YS, Feng ZL, Zhang T, Lv P, Cao J, Li D, Peng C, Lin LG. Pimarane diterpenoids from the seeds of Caesalpinia minax as PTP1B inhibitors and insulin sensitizers. Molecules. 2020;25:4674.<br />
51 Hong DF, Hu GL, Peng XR, Wang XY, Wang YB, Al-Romaima A, Li ZR, Qiu MH. Unusual ent-kaurane diterpenes from the Coffea Cultivar S288 coffee beans and molecular docking to alpha-glucosidase. J Agric Food Chem. 2022;70:615-25.
[1] Ya Gao, Jian-Chao Chen, Xing-Rong Peng, Zhong-Rong Li, Hai-Guo Su, Ming-Hua Qiu. Cucurbitane-Type Triterpene Glycosides from Momordica charantia and Their α-Glucosidase Inhibitory Activities[J]. Natural Products and Bioprospecting, 2020, 10(3): 153-161.
[2] Daniela Batista,Pedro L.Falé,Maria L.Serralheiro,Maria E.Araújo,Paulo J.A.Madeira,Carlos Borges,Isabel Torgal,Margarida Goulart,Jorge Justino,Alice Martins,Amélia P.Rauter. New In Vitro Studies on the Bioprofile of Genista tenera Antihyperglycemic Extract[J]. Natural Products and Bioprospecting, 2015, 5(6): 277-285.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
    PDF Preview