Natural Products and Bioprospecting    2020, Vol. 10 Issue (3) : 141-152     DOI: 10.1007/s13659-020-00243-3
ORIGINAL ARTICLES |
Analysis of Four Solvatomorphs of Betulin by TG-DTA-EI/PI-MS System Equipped with the Skimmer-Type Interface
Peng-Hui Yuan1, Yan-Cai Bi2, Bin Su2, De-Zhi Yang1, Ning-Bo Gong1, Li Zhang1, Yang Lu1, Guan-Hua Du3
1 Beijing City Key Laboratory of Polymorphic Drugs, Center of Pharmaceutical Polymorphs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China;
2 Soteria Pharmaceutical Co., Ltd, Laiwu 271100, People's Republic of China;
3 Beijing City Key Laboratory of Drug Target and Screening Research, National Center for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
Download: PDF(13680 KB)   HTML ()  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  Betulin (BE) has exceedingly become a potential natural product, providing multiple pharmacological and biological activities, including anti-cancer, anti-viral, and anti-inflammatory benefits. Previous research indicated that the solvatomorphism of BE can easily occur through crystallization with different organic solvents. This property of BE can directly affect its extraction, isolation, and preparation process. In this study, a system of thermogravimetry (TG)-differential thermal analysis (DTA) coupled with mass spectrometry (MS) with electron ionization (EI) and photoionization (PI) capability, equipped with the skimmer-type interface (i.e., skimmer-type interfaced TG-DTA-EI/PI-MS system), as a real-time and onsite analysis technique, was employed. Then, four solvatomorphs of BE, namely, with pyridine and water (A), sec-butanol (B), n,n-dimethylformamide (DMF) (C), and isopropanol (V), were analyzed for the first time. Finally, five kinds of the main volatile gaseous species, including H2O, pyridine, sec-butanol, DMF, and isopropanol, were identified clearly. Furthermore, the multi-step desolvation processes of the four solvatomorphs of BE were revealed by this system for the first time. This system showed great potential for the rapid and accurate analysis of various solvatomorphs of natural products.
Keywords Betulin      Solvatomorphs      TG–MS      PI method     
Fund:This work was financially supported by National Key R&D Program of China (Grant No. 2016YFC1000900), National Science and Technology Major Project of China (Grant Nos. 2017ZX09101001003, 2018ZX09711001-010),National Natural Science Foundation of China(NSFC) (Grant No. 81703473) and CAMS Innovation Fund for Medical Sciences (Grant No. 2017-I2M-3-010). The authors are grateful to Professor Hongde Xia (Institute of Engineering Thermophysics, Chinese Academy of Sciences) for his guidance and helpful suggestion.
Corresponding Authors: Li Zhang, Yang Lu     E-mail: zhangl@imm.ac.cn;luy@imm.ac.cn
Issue Date: 02 June 2020
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Peng-Hui Yuan
Yan-Cai Bi
Bin Su
De-Zhi Yang
Ning-Bo Gong
Li Zhang
Yang Lu
Guan-Hua Du
Trendmd:   
Cite this article:   
Peng-Hui Yuan,Yan-Cai Bi,Bin Su, et al. Analysis of Four Solvatomorphs of Betulin by TG-DTA-EI/PI-MS System Equipped with the Skimmer-Type Interface[J]. Natural Products and Bioprospecting, 2020, 10(3): 141-152.
URL:  
http://npb.kib.ac.cn/EN/10.1007/s13659-020-00243-3     OR     http://npb.kib.ac.cn/EN/Y2020/V10/I3/141
1. M. Del Carmen Recio, R.M. Giner, S. Manez, J. Gueho, H.R. Julien, K. Hostettmann, J.L. Rios, Planta Med. 61, 9-12 (1995)
2. C.W. Chang, T.S. Wu, Y.S. Hsieh, S.C. Kou, P.D.L. Chao, J. Nat. Prod. 62, 327-328 (1999)
3. A. Shayan et al., Biotechnol. Adv. (2020). https://doi.org/10.1016/j.biotechadv.2019.06.008
4. T. Bai, Y. Yang, Y.L. Yao, P. Sun, L.H. Lian, Y.L. Wu, J.X. Nan, Pharmacol. Res. 105, 1-12 (2016)
5. K.J. Kim, Y. Lee, H.G. Hwang, S.H. Sung, M. Lee, Y.J. Son, J. Clin. Med. 7, 154 (2018)
6. H.G. Brittain, J. Pharm. Sci. 101, 464-484 (2012)
7. F. Chemat, N. Rombaut, A.G. Sicaire, A. Meullemiestre, A.S. Fabiano-Tixier, M. Abert-Vian, Ultrason. Sonochem. 34, 540-560 (2017)
8. D. Yang, N. Gong, L. Zhang, Y. Lu, J. Pharm. Sci. 105, 1867-1873 (2016)
9. D. Yang, N. Gong, L. Zhang, Y. Lu, G. Du, J. Pharm. Sci. 106, 826-834 (2017)
10. K.G.H. Raemakers, J.C.J. Bart, Thermochim. Acta. 295, 1-58 (1997)
11. N. Worasuwannarak, T. Sonobe, W. Tanthapanichakoon, J. Anal. Appl. Pyrolysis. 78, 265-271 (2007)
12. C.W. Tang, C.B. Wang, S.H. Chien, Thermochim. Acta. 473, 68-73 (2008)
13. M. Ischia, C. Perazzolli, R.D. Maschio, R. Campostrini, J. Therm. Anal. Calorim. 87, 567-574 (2007)
14. Y. Fu, G. Li, F. Liao, M. Xiong, J. Lin, J. Mol. Struct. 1004, 252-256 (2011)
15. B. Holló, M.V. Rodić, L.S. Vojinović-Ješić, V. Živković-Radovanović, G. Vučković, V.M. Leovac, K.M. Szécsényi, J. Therm. Anal. Calorim. 116, 655-662 (2014)
16. J. Shen, H. Bai, X. Zhou, J. Liu, X. Hu, P.K. Chu, G. Tang, CrystEngComm 21, 1102-1106 (2019)
17. N.C.F. Stofella, A. Veiga, L.J. Oliveira, E.F. Montin, I.F. Andreazza, M.A.S.C. Filho, L.S. Bernardi, P.R. Oliveira, F.S. Murakami, Materials 12, 2351 (2019)
18. Q. Huang, K. Wei, H. Xia, J. Therm. Anal. Calorim. 138, 3897-3903 (2019)
19. NIST Chemistry WebBook, Standard Reference Database Number 69 (The National Institute of Standards and Technology, Gaithersburg, 2018), https://webbook.nist.gov/chemistry/Accessed 5 Mar 2020
20. T. Arii, Netsu Sokutei (Japan) 38, 149-156 (2011)
21. L.L. Celiz, T. Arii, J. Therm. Anal. Calorim. 116, 1435-1444 (2014)
22. R. Li, Q. Chen, H. Xia, Fuel Process. Technol. 170, 79-87 (2018)
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed