Natural Products and Bioprospecting    2018, Vol. 8 Issue (1) : 63-69     DOI: 10.1007/s13659-018-0152-3
ORIGINAL ARTICLES |
Evaluation of Antimycobacterial Activity of Higenamine Using Galleria mellonella as an In Vivo Infection Model
Paul Erasto1, Justin Omolo1, Richard Sunguruma1, Joan J. Munissi2, Victor Wiketye1, Charles de Konig3, Atallah F. Ahmed4
1 National Institute for Medical Research, P. O. Box 9653, Dar Es Salaam, Tanzania;
2 Department of Chemistry, University of Dar es Salaam, Dar Es Salaam, Tanzania;
3 School of Chemistry, Witwatersrand University, Johannesburg, Republic of South Africa;
4 Department of Pharmacognosy, College of Pharmacy, King Saud University, P. O. Box 2457, Riyadh 11451, Saudi Arabia
Download: PDF(4518 KB)   HTML ()  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  The Phytochemical investigation on MeOH extract on the bark of Aristolochia brasiliensis Mart. & Zucc (Aristolochiaceae) led to the isolation of major compound (1) as light brown grainy crystals. The compound was identified as 1-(4-hydroxybenzyl)-1,2,3,4-tetrahydroisoquinoline-6,7-diol (higenamine) on the basis of spectroscopic analysis, including 1D and 2D NMR spectroscopy. The compound was evaluated for its antimycobacterial activity against Mycobacterium indicus pranii (MIP), using Galleria mellonella larva as an in vivo infection model. The survival of MIP infected larvae after a single dose treatment of 100 mg/kg body weight of higenamine was 80% after 24 h. Quantitatively the compound exhibited a dose dependent activity, as evidenced by the reduction of colony density from 105 to 103 CFU for test concentrations of 50, 100, 150 and 200 mg/kg body weight respectively. The IC50 value for higenamine was 161.6 mg/kg body weight as calculated from a calibration curve. Further analysis showed that, a complete inhibition of MIP in the G. mellonella could be achieved at 334 mg/kg body weight. Despite the fact that MIP has been found to be highly resistant against isoniazid (INH) in an in vitro assay model, in this study the microbe was highly susceptible to this standard anti-TB drug. The isolation of higenamine from the genus Aristolochia and the method used to evaluate its in vivo antimycobacterial activity in G. mellonella are herein reported for the first time.
Keywords Aristolochia brasiliensis      Galleria mellonella      Higenamine      Isoniazid      Mycobacterium indicus pranii      Antimycobacterial activity     
Corresponding Authors: Paul Erasto     E-mail: paulkazyoba@yahoo.co.uk
Issue Date: 27 February 2018
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Paul Erasto
Justin Omolo
Richard Sunguruma
Joan J. Munissi
Victor Wiketye
Charles de Konig
Atallah F. Ahmed
Trendmd:   
Cite this article:   
Paul Erasto,Justin Omolo,Richard Sunguruma, et al. Evaluation of Antimycobacterial Activity of Higenamine Using Galleria mellonella as an In Vivo Infection Model[J]. Natural Products and Bioprospecting, 2018, 8(1): 63-69.
URL:  
http://npb.kib.ac.cn/EN/10.1007/s13659-018-0152-3     OR     http://npb.kib.ac.cn/EN/Y2018/V8/I1/63
1. P. Erasto, C. Marciale, J.J. Omolo, C.J. Hamilton, J. Hamilt. Res. J. Med. Plants 8, 32-40 (2014)
2. I. Chopra, P. Brennan, Tubercle Lung Dis. 78, 89-98 (1997)
3. J. Hutchinson, The Families of Flowering Plants, 3rd edn. (Clarendon Press, Oxford, 1973), p. 510
4. J.A. Duke, E.S. Ayensu, Medicinal Plants of China, vol. 1 (Reference Publications Inc, 1985), p. 131
5. C.M.O. Simoes, L.A. Mentz, E.P. Schenkel, B.E. Iragang, J.R. Stehmann, Plants da Medicina Popular no Rio Grande do Sul (Porto Alegre:UFRGS Ed, 1986), p. 50
6. L.M.X. Lopes, I.R. Nascimento, T. Da Silva, in Phytochemistry of the Aristolochiaceae family, ed. by R.M.M. Mohan. Research Advances in Phytochemistry, vol. 2. (Global Research Network, Kerala, 2001), pp. 19-108
7. Y.Y. Chen, S.Y. Chiang, H.C. Wu, S.T. Kao, C.Y. Hsiang, T.Y. Ho, J.G. Lin, Acta Pharm. Sinica 31, 227-236 (2010)
8. S. Zhu, A. Sunnassee, R. Yuan, L. Ren, X. Chen, L. Liu, Forensic Sci. Int. 199, e5-e7 (2010)
9. C.H. Chen, K.G. Dickman, M. Moriya, J. Zavadil, V.S. Sidorenko, K.L. Edwards, D.V. Gnatenko, L. Wu, R.J. Turesky, X.R. Wu, Y.S. Pu, A.P. Grollman. Proc. Natl. Acad. Sci. U.S.A. 109, 8241-8246 (2012)
10. L.S. Shie, P.C. Kuo, Y.L. Tsai, A.G. Damu, T.S. Wu, Bioorg. Med. Chem. 12, 439-446 (2004)
11. A. Capasso, S. Piacente, N.D. Tommasi, L. Rastrelli, C. Pizza, Cur. Med. Chem. 13, 807-812 (2006)
12. M.B. Machado, L.M.X. Lopes, Phytochemistry 69, 3095-3102 (2008)
13. G.R. Battu, R. Parimi, K.B.C. Shekar, Pharm. Biol. 49, 1210-1214 (2011)
14. P.C. Kuo, Y.C. Li, T.S. Wu, J. Trad. Complem. Med. 2, 249-266 (2012)
15. V. Saini, S. Raghuranshi, G.P. Talwar, N. Ahmed, J.P. Khurana, S.E. Hasnain, A.K. Tyagi, PLosONE 4 (2009). https://doi.org/10.1371/journal.pone.0006263
16. P. Erasto, Z.H. Mbwambo, R.S.O. Nondo, N. Lall. Spatulla DD 1, 73-80 (2011)
17. P. Erasto, J. Omolo, C. Hamilton, C. de-Konig. Sc, J. Microbiol. 2, 214-219 (2013)
18. T. Kosuge, M. Yokota, M. Nagasawa, Yakugaku Zasshi 98, 1370-1375 (1978)
19. M. Tsukiyama, T. Akaishi, T. Ueki, K. Abe, Biol. Pharm. Bull. 30, 2063-2068 (2007)
20. G. Bai, Y. Yang, Q. Shi, Z. Liu, Q. Zhang, Y. Zhu, Acta Pharm. Sinica 29, 1187-1194 (2008)
21. S. Praman, M.J. Mulvany, D.E. Williams, R.J. Andersen, C. Jansakul. J. Ethnopharmacol. 149, 123-132 (2013)
22. S.A. Joyce, C.G. Gahan. Microbiology 156, 3456-3468 (2010)
23. K. Mukherjee, B. Altincicek, T. Hain, E. Domann, A. Vilcinskas, T. Chakraborty, Appl. Environ. Microbiol. 76, 310-317 (2010)
24. F. O'Donnell, T.J. Smyth, V.N. Ramachandran, W.F. Smyth, Int. J. Ant. Agents. 35, 30-38 (2010)
25. M.E. Wand, C.M. Müller, R.W. Titball, S.L. Michell, BMC Microbiol. 11, 11 (2011)
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed