Natural Products and Bioprospecting    2017, Vol. 7 Issue (3) : 225-234     DOI: 10.1007/s13659-017-0127-9
|
Pyrocincholic acid 3β-O-β-D-quinovopyranosyl-28-O-β-D-glucopyranoside suppresses adipogenesis and regulates lipid metabolism in 3T3-L1 adipocytes
Li Peng1,2, Yanting Lu1,2, Yuhui Xu1,2, Jing Hu1,2, Fang Wang1,2, Yumei Zhang3, Wenyong Xiong1,4
1. State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China;
2. University of the Chinese Academy of Sciences, Beijing 100049, China;
3. Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China;
4. Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming 650201, China
Download: PDF(2499 KB)   HTML ()  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  Obesity is crucially involved in many metabolic diseases, such as type 2 diabetes, cardiovascular disease and cancer. Regulating the number or size of adipocytes has been suggested to be a potential treatment for obesity. In this study, we investigated the effect of pyrocincholic acid 3β-O-β-D-quinovopyranosyl-28-O-β-D-glucopyranoside (PAQG), a 27-nor-oleanolic acid saponin extracted from Metadina trichotoma, on adipogenesis and lipid metabolism in 3T3-L1 adipocytes. The 3T3-L1 pre-adipocytes were incubated with vehicle or PAQG for 6 days in differentiation process. PAQG significantly reduced the adipogenesis, adiponectin secretion and the expression level of key transcription factors related to adipogenesis, such as PPARγ, C/EBPβ, C/EBPα, and FABP4. Moreover, PAQG increased the levels of FFA and glycerol in medium and reduced TG level in mature adipocytes. Interestingly, PAQG not only promoted the activation of AMPK and genes involved in fatty oxidation including PDK4 and CPT1a, but also inhibited those genes involved in fatty acid biosynthesis, such as SREBP1c, FAS, ACCa and SCD1. In conclusion, PAQG inhibits the differentiation and regulates lipid metabolism of 3T3-L1 cells via AMPK pathway, suggesting that PAQG may be a novel and promising natural product for the treatment of obesity and hyperlipidemia.
Keywords Pyrocincholic acid 3β-O-β-D-quinovopyranosyl-28-O-β-D-glucopyranoside      Adipogenesis      Lipid metabolism      AMP-activated protein kinase     
Issue Date: 06 February 2018
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Li Peng
Yanting Lu
Yuhui Xu
Jing Hu
Fang Wang
Yumei Zhang
Wenyong Xiong
Trendmd:   
Cite this article:   
Li Peng,Yanting Lu,Yuhui Xu, et al. Pyrocincholic acid 3β-O-β-D-quinovopyranosyl-28-O-β-D-glucopyranoside suppresses adipogenesis and regulates lipid metabolism in 3T3-L1 adipocytes[J]. Natural Products and Bioprospecting, 2017, 7(3): 225-234.
URL:  
http://npb.kib.ac.cn/EN/10.1007/s13659-017-0127-9     OR     http://npb.kib.ac.cn/EN/Y2017/V7/I3/225
1. P. Arner, A. Kulyte, Nat. Rev. Endocrinol. 11, 276-288 (2015)
2. P.G. Kopelman, Nature 404, 635-643 (2000)
3. J. Jo, O. Gavrilova, S. Pack, W. Jou, S. Mullen, A.E. Sumner, S.W. Cushman, V. Periwal, PLOS Comput. Biol. 5(3), e1000324 (2009)
4. R. Zieba, Postepy Hig. Med. Dosw.(Online) 61, 612-626 (2007)
5. J.C.G. Halford, Curr. Opin. Investig. Drugs 7, 312-318 (2006)
6. J. Ahn, H. Lee, S. Kim, J. Park, T. Ha, Biochem. Biophys. Res. Commun. 404(2011), 579 (2008)
7. Y.H. He, Y. Li, T.T. Zhao, Y.W. Wang, C.H. Sun, PLoS ONE 8, 12 (2013)
8. D. Lo Furno, A.C.E. Graziano, R. Avola, R. Giuffrida, V. Perciavalle, F. Bonina, G. Mannino, V. Cardile, PPAR Res. 2016, 9 (2016)
9. Y.L. Peng, L.B. Zhang, Phytotaxa 269, 236 (2016)
10. B. Dinda, S. Debnath, B.C. Mohanta, Y. Harigaya, Chem. Biodivers. 7, 2327-2580 (2010)
11. K.S. Kim, O. Ezaki, S. Ikemoto, H. Itakura, J. Nutr. Sci. Vitaminol. 41, 485-491 (1995)
12. H.J. Green, O. Kehinde, Cell 5, 19-27 (1975)
13. D.L. Brasaemle, Cell Metab. 11, 173-174 (2010)
14. B.B. Lowell, Cell 99, 239-242 (1999)
15. W.Y. Liu, R.S. Jiang, Pak. J. Biol. Sci. 16, 1459-1468 (2013)
16. Y. Han, J. Kee, J. Park, H. Kim, M.Y. Jeong, D.S. Kim, Y. Jeon, Y.W. Jung, D.H. Youn, J. Kang, J. Cell. Biochem. 117, 2067 (2016)
17. N.M. Anthony, M.P. Gaidhu, R.B. Ceddia, Obesity 17, 1312-1317 (2009)
18. Q.Q. Tang, M.D. Lane, Annu. Rev. Biochem. 81, 715-736 (2012)
19. J.M. Ntambi, K. Youngcheul, J. Nutr. 130(12), 3122S-3126S (2000)
20. X. Zeng, X. Zhou, J. Xu, S.M.H. Chan, C. Xue, J.C. Molero, J. Ye, Biochem. Pharmacol. 84, 830-837 (2012)
21. E.D. Rosen, O.A. Macdougald, Nat. Rev. Mol. Cell Biol. 7, 885-896 (2006)
22. Q. Sun, W. Qi, J. Yang, K.S. Yoon, J.M. Clark, Y. Park, Food Chem. Toxicol. 92, 217-223 (2016)
23. L. Guo, X. Li, Q. Tang, J. Biol. Chem. 290, 755-761 (2015)
24. J.D. Paulauskis, H.S. Sul, J. Biol. Chem. 263, 7049-7054 (1988)
25. Y. Chen, X.Y. Zeng, Y. He, H. Liu, B. Wang, H. Zhou, J. Chen, P.Q. Liu, L. Gu, J.M. Ye, ACS Chem. Biol. 8, 2301-2311 (2013)
26. J. Zhang, H. Tang, R. Deng, N. Wang, Y. Zhang, Y. Wang, Y. Liu, F. Li, W. Xiao, L. Zhou, PLoS ONE 10(4), e0125667 (2015)
27. J.L. Ramirezzacarias, F. Castromunozledo, W. Kuriharcuch, Histochem. Cell Biol. 97, 493-497 (1992)
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed