ORIGINAL ARTICLES |
|
|
|
|
|
Essential oil and furanosesquiterpenes from myrrh oleo-gum resin: a breakthrough in mosquito vector management |
Eleonora Spinozzi1, Marta Ferrati1, Cecilia Baldassarri2, Paolo Rossi2, Guido Favia2, Giorgio Cameli1, Giovanni Benelli3, Angelo Canale3, Livia De Fazi3, Roman Pavela4,5, Luana Quassinti6, Cristiano Giordani7,8, Fabrizio Araniti9, Loredana Cappellacci1, Riccardo Petrelli1, Filippo Maggi1 |
1. Chemistry Interdisciplinary Project (ChIP) Research Center, School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032, Camerino, Italy; 2. School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, 62032, Camerino, Italy; 3. Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy; 4. Crop Research Institute, Drnovska 507, 161 06, Prague, Czech Republic; 5. Department of Plant Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea; 6. School of Pharmacy, University of Camerino, Camerino, Italy; 7. Instituto de Física, Universidad de Antioquia, UdeA, Calle 70 No 52-21, 050010, Medellín, Colombia; 8. Grupo Productos Naturales Marinos, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia, Calle 70 No. 52-21, 050010, Medellín, Colombia; 9. Dipartimento di Scienze Agrarie e Ambientali, Produzione, Territorio, Agroenergia, Università Statale di Milano, Via Celoria N. 2, 20133, Milan, Italy |
|
|
Abstract Mosquitoes (Diptera: Culicidae) are vectors of various pathogens of public health concern and replacing conventional insecticides remains a challenge. In this regard, natural products represent valuable sources of potential insecticidal compounds, thus increasingly attracting research interest. Commiphora myrrha (T.Nees) Engl. (Burseraceae) is a medicinal plant whose oleo-gum resin is used in food, cosmetics, fragrances, and pharmaceuticals. Herein, the larvicidal potential of its essential oil (EO) was assessed on four mosquito species (Aedes albopictus Skuse, Aedes aegypti L., Anopheles gambiae Giles and Anopheles stephensi Liston), with LC50 values ranging from 4.42 to 16.80 μg/mL. The bio-guided EO fractionation identified furanosesquiterpenes as the main larvicidal compounds. A GC-MS-driven untargeted metabolomic analysis revealed 32 affected metabolic pathways in treated larvae. The EO non-target toxicity on Daphnia magna Straus (LC50 = 4.51 μL/L) and its cytotoxicity on a human kidney cell line (HEK293) (IC50 of 14.38 μg/mL) were also assessed. This study shows the potential of plant products as innovative insecticidal agents and lays the groundwork for the possible exploitation of C. myrrha EO in sustainable approaches for mosquito management.
|
Keywords
Arbovirus vector
Commiphora myrrha
Aedes aegypti
Anopheles spp.
Bioinsecticide
|
Fund:This research was granted by the project PRIN 2022 “Bioformulations for controlled release of botanical pesticides for sustainable agriculture” (prot. 202274BK9L) supported by the Italian Ministry of University and Research (MUR). Roman Pavela would like to thank the Technology agency of the Czech Republic for its financial support concerning botanical pesticide (Project No. FW06010376). |
Corresponding Authors:
Eleonora Spinozzi, E-mail:eleonora.spinozzi@unicam.it
E-mail: eleonora.spinozzi@unicam.it
|
Issue Date: 17 May 2025
|
|
|
[1] Chala B, Hamde F. Emerging and re-emerging vector-borne infectious diseases and the challenges for control: a review. Front Public Health. 2021;9:1-10. https://doi.org/10.3389/fpubh.2021.715759. [2] Benelli G, Wilke AB, Beier JC. Aedes albopictus (Asian tiger mosquito). Trends Parasitol. 2020;36:942-3. https://doi.org/10.1016/j.pt.2020.01.001. [3] Pustijanac E, Buršić M, Millotti G, Paliaga P, Iveša N, Cvek M. Tick-borne bacterial diseases in Europe: threats to public health. Eur J Clin Microbiol Infect Dis. 2024. https://doi.org/10.1007/s10096-024-04836-5. [4] Hemingway J, Ranson H. Insecticide resistance in insect vectors of human disease. Annu Rev Entomol. 2000;45:371-91. https://doi.org/10.1146/annurev.ento.45.1.371. [5] Haddi K, Nauen R, Benelli G, Guedes RNC. Global perspectives on insecticide resistance in agriculture and public health. Entomol Gen. 2023;43:495-500. https://doi.org/10.1127/entomologia/2023/2186. [6] Modafferi A, Giunti G, Benelli G, Campolo O. Ecological costs of botanical nano-insecticides. Curr Opin Environ Sci Health. 2024;42: 100579. https://doi.org/10.1016/j.coesh.2024.100579. [7] Dolara P, Corte B, Ghelardini C, Pugliese AM, Cerbai E, Menichetti S, Nostro AL. Local anaesthetic, antibacterial and antifungal properties of sesquiterpenes from myrrh. Planta Med. 2000;66(04):356-8. https://doi.org/10.1055/s-2000-8532. [8] Abdul-Ghani RA, Loutfy N, Hassan A. Myrrh and trematodoses in Egypt: an overview of safety, efficacy and effectiveness profiles. Parasitol Internat. 2009;58(3):210-4. https://doi.org/10.1016/j.parint.2009.04.006. [9] Batiha GES, Wasef L, Teibo JO, Shaheen HM, Zakariya AM, Akinfe OA, Teibo TKA, Al-kuraishy HM, Al-Garbee AI, Alexiou A, Papadakis M. Commiphora myrrh: a phytochemical and pharmacological update. Naunyn-Schmiedeberg’s Arch Pharmacol. 2023;396(3):405-20. https://doi.org/10.1007/s00210-022-02325-0. [10] Leung AY, Foster S. Encyclopedia of common natural ingredients (used in food, drugs, and cosmetics). Hoboken: A John Wiley & Sons Inc.; 2003. p. 366-7. [11] Lubbe A, Verpoorte R. Cultivation of medicinal and aromatic plants for specialty industrial materials. Ind Crops Prod. 2011;34(1):785-801. https://doi.org/10.1016/j.indcrop.2011.01.019. [12] Nomicos EY. Myrrh: medical marvel or myth of the magi? Holist Nurs Pract. 2007;21(6):308-23. https://doi.org/10.1097/01.HNP.0000298616.32846.34. [13] Wahba TF, Aly HM, Hassan NA. The antifeedant properties of bio-oil from Cupressus Sempervirens against Rice Weevil (Sitophilus oryzae) compared to that of myrrh and frankincense oils. Egypt J Agric Res. 2023;101(2):331-41. https://doi.org/10.21608/ejar.2023.192485.1341. [14] Zhu Y, Wu T, Hu Q, He W, Zheng Y, Xie Y, Rao Q, Liu X. Plant essential oils: dual action of toxicity and egg-laying inhibition on Tetranychus urticae (Acari:Tetranychidae), unveiling their potential as botanical pesticides. Plants. 2024;13(6):763. https://doi.org/10.3390/plants13060763. [15] Dekebo A, Dagne E, Sterner O. Furanosesquiterpenes from Commiphora sphaerocarpa and related adulterants of true myrrh. Fitoterapia. 2002;73(1):48-55. https://doi.org/10.1016/S0367-326X(01)00367-7. [16] Marongiu B, Piras A, Porcedda S, Scorciapino A. Chemical composition of the essential oil and supercritical CO2 extract of Commiphora myrrha (Nees) Engl. and of Acorus calamus L. J Agric Food Chem. 2005;53(20):7939-43. https://doi.org/10.1021/jf051100x. [17] Morteza-Semnani K, Saeedi M. Constituents of the essential oil of Commiphora myrrha (Nees) Engl. Var. molmol. J Essent Oil Res. 2003;15(1):50-1. https://doi.org/10.1080/10412905.2003.9712264. [18] Baldovini N, Tomi F, Casanova J. Identification and quantitative determination of furanodiene, a heat‐sensitive compound, in essential oil by 13C‐NMR. Phytochem Anal. 2001;12(1):58-63. https://doi.org/10.1002/1099-1565(200101/02)12:1<58::AID-PCA559>3.0.CO,2-9. [19] Van den Dool H, Krat PD. A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J Chromatogr. 1963;2:463-71. [20] Adams DRP. Identification of essential oil components by gas chromatography/. 2005. [21] NIST N. Mass Spectral Library (NIST/EPA/NIH). 2005. [22] Mondello L. FFNSC 2: flavors and fragrances of natural and synthetic compounds, mass spectral database. Software. 2011. [23] Maggi F, Barboni L, Papa F, Caprioli G, Ricciutelli M, Sagratini G, Vittori S. A forgotten vegetable (Smyrnium olusatrum L., Apiaceae) as a rich source of isofuranodiene. Food Chem. 2012;135(4):2852-62. https://doi.org/10.1016/j.foodchem.2012.07.027. [24] https://jadebloom.com/media/wysiwyg/myrrh-gcms.pdf 2017. Accessed on 16 Aug 2024. [25] Brieskorn CH, Noble P. Two furanoeudesmanes from the essential oil of myrrh. Phytochem. 1983;22(1):187-9. https://doi.org/10.1016/S0031-9422(00)80085-0. [26] Pavela R, Pavoni L, Bonacucina G, Cespi M, Kavallieratos NG, Cappellacci L, Petrelli R, Maggi F, Benelli G. Rationale for developing novel mosquito larvicides based on isofuranodiene microemulsions. J Pest Sci. 2019;92:909-21. https://doi.org/10.1007/s10340-018-01076-3. [27] Weyerstahl P, Marschall-Weyerstahl H, Christiansen C, Oguntimein BO, Adeoye AO. Volatile constituents of Eugenia uniflora leaf oil. Planta Med. 1988;54(6):546-9. https://doi.org/10.1055/s-2006-962544. [28] Alanazi NAH, Alamri AA, Mashlawi AM, Almuzaini N, Mohamed G, Salama SA. Gas chromatography-mass spectrometry chemical profiling of commiphora myrrha resin extracts and evaluation of larvicidal, antioxidant, and cytotoxic activities. Molecules. 2024;29:1778. https://doi.org/10.3390/molecules29081778. [29] Baranitharan M, Dhanasekaran S. Mosquito larvicidal properties of Commiphora caudata (Wight & Arn.) (Bursaceae) against Aedes aegypti (Linn.), Anopheles stephensi (Liston), Culex quinquefasciatus (Say). Int J Curr Microbiol App Sci. 2014;3:262-8. [30] Baranitharan M, Dhanasekaran S, Gokulakrishnan J, Mahesh Babu S, Thushimenan S. Nagapattinam medicinal plants against the dengue fever mosquito, Aedes aegypti. Int J Mosq Res. 2016;3:29-34. [31] Mkangara M, Chacha M, Kazyoba PE. Larvicidal potential of Commiphora swynnertonii (Burtt) stem bark extracts against Anopheles gambiae ss, Culex quinquefasciatus Say and Aedes aegypti. L Int J Sci Res. 2015;4:356-61. [32] Muturi EJ, Hay WT, Doll KM, Ramirez JL, Selling G. Insecticidal activity of Commiphora erythraea essential oil and its emulsions against larvae of three mosquito species. J Med Entomol. 2020;57:1835-42. https://doi.org/10.1093/jme/tjaa097. [33] Pavela R. Essential oils for the development of eco-friendly mosquito larvicides: a review. Ind Crops Prod. 2015;76:174-87. https://doi.org/10.1016/j.indcrop.2015.06.050. [34] Costa JG, Pessoa OD, Menezes EA, Santiago GM, Lemos TL. Composition and larvicidal activity of essential oils from heartwood of Auxemma glazioviana Taub. (Boraginaceae). Flavour Fragr J. 2004;19(6):529-31. https://doi.org/10.1002/ffj.1332. [35] Shaalan EAS, Canyon DV, Bowden B, Younes MWF, Abdel-Wahab H, Mansour AH. Efficacy of botanical extracts from Callitris glaucophylla against Aedes aegypti and Culex annulirostris mosquitoes. Trop Biomed. 2006;23:180-5. [36] Triba MN, Le Moyec L, Amathieu R, Goossens C, Bouchemal N, Nahon P, Rutledge DN, Savarin P. PLS/OPLS models in metabolomics: the impact of permutation of dataset rows on the K-fold cross-validation quality parameters. Mol Biosyst. 2015;11(1):13-9. https://doi.org/10.1039/c4mb00414k. [37] Hu T, Zhang W, Fan Z, Sun G, Likhodi S, Randell E, Zhai G. Metabolomics differential correlation network analysis of osteoarthritis. In Biocomputing: Proceedings of the Pacific Symposium. World Scientific Publishing Company. Singapore; 2016. pp. 120-131. [38] Chong J, Soufan O, Li C, Caraus I, Li S, Bourque G, Wishart DS, Xia J. MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis. Nucleic Acids Res. 2018;46(W1):W486-94. https://doi.org/10.1093/nar/gky310. [39] Brinzer RA, Henderson L, Marchiondo AA, Woods DJ, Davies SA, Dow JA. Metabolomic profiling of permethrin-treated Drosophila melanogaster identifies a role for tryptophan catabolism in insecticide survival. Insect Biochem Mol Biol. 2015;67:74-86. https://doi.org/10.1016/j.ibmb.2015.09.009. [40] Gao YP, Luo M, Wang XY, He XZ, Lu W, Zheng XL. Pathogenicity of Beauveria bassiana PfBb and immune responses of a non-target host, Spodoptera frugiperda (Lepidoptera: Noctuidae). Insects. 2022;13(10):914. https://doi.org/10.3390/insects13100914. [41] Cerstiaens A, Huybrechts J, Kotanen S, Lebeau I, Meylaers K, De Loof A, Schoofs L. Neurotoxic and neurobehavioral effects of kynurenines in adult insects. Biochem Biophys Res Commun. 2003;312(4):1171-7. https://doi.org/10.1016/j.bbrc.2003.11.051. [42] Li Y, Li Y, Wang G, Li J, Zhang M, Wu J, Liang C, Zhou H, Tang J, Zhu G. Differential metabolome responses to deltamethrin between resistant and susceptible Anopheles sinensis. Ecotoxicol Env Saf. 2022;237:113553. https://doi.org/10.1016/j.ecoenv.2022.113553. [43] Mansingh A. The effect of malathion on the metabolism of amino acids in the German cockroach Blattella germanica. J Insect Physiol. 1965;11(10):1389-400. https://doi.org/10.1016/0022-1910(65)90176-9. [44] Rand EED, Smit S, Beukes M, Apostolides Z, Pirk CW, Nicolson SW. Detoxification mechanisms of honeybees (Apis mellifera) resulting in tolerance of dietary nicotine. Sci Rep. 2015;5(1):11779. https://doi.org/10.1038/srep11779. [45] Marco L, Sassera D, Epis S, Mastrantonio V, Ferrari M, Ricci I, Comandatore F, Bandi C, Porretta D, Urbanelli S. The choreography of the chemical defensome response to insecticide stress: insights into the Anopheles stephensi transcriptome using rna-seq. Sci Rep. 2017;7(1):1312. https://doi.org/10.1038/srep41312. [46] Mack L. Time-series analysis of transcriptomic changes due to permethrin exposure reveals that Aedes aegypti undergoes detoxification metabolism over 24 h. Sci Rep. 2023;13(1):16564. https://doi.org/10.1038/s41598-023-43676-9. [47] Zhang C, Yuan H, Hu Y, Li X, Gao Y, Ma Z, Lei P. Structural diversity design, synthesis, and insecticidal activity analysis of ester-containing isoxazoline derivatives acting on the GABA receptor. J Agric Food Chem. 2023;71(7):3184-91. https://doi.org/10.1021/acs.jafc.2c07910. [48] Homberg U, Humberg T, Seyfarth J, Bode K, Pérez M. GABA immunostaining in the central complex of dicondylian insects. J Comp Neurol. 2018;526(14):2301-18. https://doi.org/10.1002/cne.24497. [49] Zulfiqar F, Akram N, Ashraf M. Osmoprotection in plants under abiotic stresses: new insights into a classical phenomenon. Planta. 2019. https://doi.org/10.1007/s00425-019-03293-1. [50] Darkó É, Végh B, Khalil R, Marček T, Szalai G, Pál M, Janda T. Metabolic responses of wheat seedlings to osmotic stress induced by various osmolytes under iso-osmotic conditions. PLoS ONE. 2019;14(12): e0226151. https://doi.org/10.1371/journal.pone.0226151. [51] USEPA, United States Environmental Protection Agency. Methods for Measuring the Acute Toxicity of Effluent to Freshwater and Marine Organisms. 3rd ed. USEPA. United States Environmental Protection Agency. Washington, DC, United States; 1985. [52] FATMA, Limites Máximos de Toxidade Aguda para efluentes de diferentes origins. In: PORTARIA No. 017/02; 2002. [53] Ural MS, Saglam N. A study on the acute toxicity of pyrethroid deltamethrin on the fry rainbow trout (Oncorhynchus mykiss Walbaum, 1792). Pestic Biochem Physiol. 2005;83(2-3):124-31. https://doi.org/10.1016/j.pestbp.2005.04.004. [54] Başer S, Erkoç F, Selvi M, Koçak O. Investigation of acute toxicity of permethrin on guppies Poecilia reticulata. Chemosphere. 2003;51(6):469-74. https://doi.org/10.1016/S0045-6535(03)00033-X. [55] Barata C, Baird DJ, Nogueira AJA, Soares AMVM, Riva MC. Toxicity of binary mixtures of metals and pyrethroid insecticides to Daphnia magna Straus. Implications for multi-substance risks assessment. Aquat Toxicol. 2006;78(1):1-14. https://doi.org/10.1016/j.aquatox.2006.01.013. [56] Imgrund H. Environmental Fate of Permethrin. In Environmental Monitoring Branch. Department of Pesticide Regulation. Sacramento, CA, USA; 2003. [57] Maranho LA, Botelho RG, Mitie Inafuku M, Nogueira L, de Olinda AR, InaciodeSousa BAI, Tornisielo VL. Testing the neem biopesticide (Azadirachta indica A. Juss) for acute toxicity with Danio rerio and for chronic toxicity with Daphnia magna. J Agric Sci Tech. 2014;16(1):105-11. [58] Ulrich J, Stiltz S, St-Gelais A, El Gaafary M, Simmet T, Syrovets T, Schmiech M. Phytochemical composition of Commiphora oleogum resins and their cytotoxicity against skin cancer cells. Molecules. 2022;27(12):3903. https://doi.org/10.3390/molecules27123903. [59] Sun X-Y, Zheng Y-P, Lin D-H, Zhang H, Zhao F, Yuan C-S. Potential anti-cancer activities of furanodiene, a sesquiterpene from Curcuma wenyujin. Am J Chin Med. 2009;37(03):589-96. https://doi.org/10.1142/S0192415X09007077. [60] Quassinti L, Bramucci M, Lupidi G, Barboni L, Ricciutelli M, Sagratini G, Papa F, Caprioli G, Petrelli D, Vitali LA, Vittori S, Maggi F. In Vitro biological activity of essential oils and isolated furanosesquiterpenes from the neglected vegetable Smyrnium olusatrum L. (Apiaceae). Food Chem. 2013;138(2):808-13. https://doi.org/10.1016/j.foodchem.2012.11.075. [61] Wang C-C, Chen L-G, Yang L-L. Cytotoxic activity of sesquiterpenoids from Atractylodes ovata on Leukemia cell lines. Planta Med. 2002;68(3):204-8. https://doi.org/10.1055/s-2002-23144. [62] Wang K-T, Chen L-G, Yang L-L, Ke W-M, Chang H-C, Wan C-C. Analysis of the sesquiterpenoids in processed Atractylodis rhizoma. Chem Pharm Bull. 2007;55(1):50-6. https://doi.org/10.1248/cpb.55.50. [63] Spinozzi E, Ferrati M, Baldassarri C, Petrelli R, Cappellacci L, De Fazi L, Benelli G, Maggi F. Unlocking the potential of alexanders (Smyrnium olusatrum L., Apiaceae): a neglected species with future crop prospect. Ind Crops Prod. 2024;218:118847. https://doi.org/10.1016/j.indcrop.2024.118847. [64] Wang Y, Li J, Guo J, Wang Q, Zhu S, Gao S, Yang C, Wei M, Pan X, Zhu W, Ding D, Gao R, Zhang W, Wang J, Zang L. Cytotoxic and antitumor effects of curzerene from Curcuma longa. Planta Med. 2016;83(01/02):23-9. https://doi.org/10.1055/s-0042-107083. [65] Pavela R, Pavoni L, Bonacucina G, Cespi M, Cappellacci L, Petrelli R, Spinozzi E, Aguzzi C, Zeppa L, Ubaldi M, Desneux N, Canale A, Maggi F, Benelli G. Encapsulation of Carlina acaulis essential oil and carlina oxide to develop long-lasting mosquito larvicides: Microemulsions versus nanoemulsions. J Pest Sci. 2021;94:899-915. https://doi.org/10.1007/s10340-020-01327-2. [66] Stepanenko AA, Dmitrenko VV. HEK293 in cell biology and cancer research: phenotype, karyotype, tumorigenicity, and stress-induced genome-phenotype evolution. Gene. 2015;569(2):182-90. https://doi.org/10.1016/j.gene.2015.05.065. [67] Gugliuzzo A, Francardi V, Simoni S, Roversi PF, Ferrati M, Spinozzi E, Perinelli DR, Bonacucina G, Maggi F, Tortorici S, Tropea Garzia G, Biondi A, Rizzo R. Role of plant essential oil nanoemulsions on host colonization by the invasive ambrosia beetle Xylosandrus compactus. Ind Crops Prod. 2023;195: 116437. https://doi.org/10.1016/j.indcrop.2023.116437. [68] Maggi F, Papa F, Giuliani C, Maleci Bino L, Venditti A, Bianco A, Nicoletti M, Iannarelli R, Caprioli G, Sagratini G, Cortese M, Ricciutelli M, Vittori S. Essential oil chemotypification and secretory structures of the neglected vegetable Smyrnium olusatrum L. (Apiaceae) growing in central Italy. Flavour Fragr J. 2015;30(2):139-59. https://doi.org/10.1002/ffj.3221. [69] Williams CM, Mander LN. Chromatography with silver nitrate. Tetrahedron. 2001;57(3):425-47. https://doi.org/10.1016/S0040-4020(00)00927-3. [70] Mander LN, Williams CM. Chromatography with silver nitrate: part 2. Tetrahedron. 2016;72(9):1133-50. https://doi.org/10.1016/j.tet.2016.01.004. [71] Damiens D, Benedict M, Wille M, Gilles J. An inexpensive and effective larval diet for Anopheles arabiensis (Diptera: Culicidae): eat like a horse, a bird, or a fish? J Med Entomol. 2012;49:1001-11. https://doi.org/10.1603/ME11289. [72] WHO. Report of the WHO Informal Consultation on the Evaluation and Testing of 854 Insecticides. WHO Geneva. 1996;10:1026-1032. [73] Page M, Bejaoui N, Cinq-Mars B, Lemieux P. Optimization of the tetrazoliun-based colorimetric assay for the measurement of cell number and cytotoxicity. Int J Immunopharmacol. 1998;10(7):785-93. https://doi.org/10.1016/0192-0561(88)90001-X. [74] Misra BB, Das V, Landi M, Abenavoli MR, Araniti F. Short-term effects of the allelochemical umbelliferone on Triticum durum L. metabolism through GC-MS based untargeted metabolomics. Plant Sci. 2020;298:110548. https://doi.org/10.1016/j.plantsci.2020.110548. [75] Misra B. Steps for building an open source EI-MS mass spectral library for GC-MS -based metabolomics. Metabolomics Protocols & Workflows. 2019; https://doi.org/10.17504/protocols.io.8txhwpn [76] Sumner LW, Amberg A, Barrett D, Beale MH, Beger R, Daykin CA, Fan W-MT, Fiehn O, Goodacre R, Griffin JL, Hankemeier T, Hardy N, Harnly J, Higashi R, Kopka J, Lane AN, Lindon JC, Marriott P, Nicholls AW, Reily MD, Thaden JJ, Viant MR. Proposed minimum reporting standards for chemical analysis: chemical analysis working group (CAWG) metabolomics standards initiative (MSI). Metabolomics. 2007;3:211-21. https://doi.org/10.1007/s11306-007-0082-2. [77] OECD. Guideline for testing of chemicals. Daphnia sp., acute immobilisation test. 2004. [78] Hlina BL, Birceanu O, Robinson CS, Dhiyebi H, Wilkie MP. The relationship between thermal physiology and lampricide sensitivity in larval sea lamprey (Petromyzon marinus). J Great Lakes Res. 2021;47:S272-84. https://doi.org/10.1016/j.jglr.2021.10.002. [79] R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. 2008. http://www.R-project.org. Accessed 26 Jul 2024. [80] Abbott WS. A method of computing the effectiveness of an insecticide. J Econ Entomol. 1925;18(2):265-7. [81] Finney DJ. Probit analysis. London: Cambridge University Press; 1971. [82] Pang Z, Lu Y, Zhou G, Hui F, Xu L, Viau C, Spigelman AF, MacDonald PE, Wishart DS, Li S, Xia J. MetaboAnalyst 6.0: towards a unified platform for metabolomics data processing, analysis and interpretation. Nucleic Acids Res. 2024;52:W398-406. https://doi.org/10.1093/nar/gkae253. [83] Basu S, Duren W, Evans CR, Burant CF, Michailidis G, Karnovsky A. Sparse network modeling and metscape-based visualization methods for the analysis of large-scale metabolomics data. Bioinformatics. 2017;33(10):1545-53. https://doi.org/10.1093/bioinformatics/btx012. |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|