REVIEW |
|
|
|
|
|
Biotransformation of selected secondary metabolites by Alternaria species and the pharmaceutical, food and agricultural application of biotransformation products |
Babalwa Tembeni, Olusola Emmanuel Idowu, Rachid Benrkia, Salima Boutahiri, Opeyemi Joshua Olatunji |
African Genome Center, Mohammed VI Polytechnic University, Benguerir, Morocco |
|
|
Abstract Biotransformation is a process in which molecules are modified in the presence of a biocatalyst or enzymes, as well as the metabolic alterations that occur in organisms from exposure to the molecules. Microbial biotransformation is an important process in natural product drug discovery as novel compounds are biosynthesised. Additionally, biotransformation products offer compounds with improved efficacy, solubility, reduced cytotoxic and allows for the understanding of structure activity relationships. One of the driving forces for these impeccable findings are associated with the presence of cytochrome P450 monooxygenases that is present in all organisms such as mammals, bacteria, and fungi. Numerous fungal strains have been used and reported for their ability to biotransform different compounds. This review focused on studies using Alternaria species as biocatalysts in the biotransformation of natural product compounds. Alternaria species facilitates reactions that favour stereoselectivity, regioselectivity under mild conditions. Additionally, microbial biotransformation products, their application in food, pharmaceutical and agricultural sector is discussed in this review.
|
Keywords
Alternaria
Biotransformation
Fermentation
Cytochrome P450
Cofactor-NADPH
|
Corresponding Authors:
Babalwa Tembeni,E-mail:babalwa.tembeni@um6p.ma;Opeyemi Joshua Olatunji,E-mail:joshua.olatunji@um6p.ma
E-mail: babalwa.tembeni@um6p.ma;joshua.olatunji@um6p.ma
|
Issue Date: 14 October 2024
|
|
|
[1] Dias DA, Urban S, Roessner U. A historical overview of natural products in drug discovery. Metabolites. 2012;2(2):303-36. https://doi.org/10.3390/metabo2020303. [2] Tegen D, Dessie K, Damtie D. Candidate anti-COVID-19 medicinal plants from Ethiopia: a review of plants traditionally used to treat viral diseases. J Complement Med Res. 2021;2021(1):6622410. https://doi.org/10.1155/2021/6622410. [3] Skalli S, Hassikou R, Arahou M. An ethnobotanical survey of medicinal plants used for diabetes treatment in Rabat Morocco. Heliyon. 2019. https://doi.org/10.1016/j.heliyon.2019.e01421. [4] Abd-Alla HI, Kutkat O, Sweelam HT, Eldehna WM, Mostafa MA, Ibrahim MT, Moatasim Y, GabAllah M, Al-Karmalawy AA. Investigating the potential anti-SARS-CoV-2 and anti-MERS-CoV activities of yellow necklacepod among three selected medicinal plants: extraction, isolation, identification, in vitro, modes of action, and molecular docking studies. Metabolites. 2022;12(11):1109. https://doi.org/10.3390/metabo12111109. [5] Benatrehina PA, Chen WL, Czarnecki AA, Kurina S, Chai HB, Lantvit DD, Ninh TN, Zhang X, Soejarto DD, Burdette JE, Kinghorn AD. Bioactivity-Guided Isolation of totarane-derived diterpenes from Podocarpus neriifolius and structure revision of 3-deoxy-2 α-hydroxynagilactone E. Nat Prod Bioprospect. 2019;9:157-63. https://doi.org/10.1007/s13659-019-0198-x. [6] Gerlach SL, Burman R, Bohlin L, Mondal D, Goransson U. Isolation, characterization, and bioactivity of cyclotides from the Micronesian plant Psychotria leptothyrsa. J Nat Prod. 2010;73(7):1207-12. https://doi.org/10.1021/np9007365. [7] Siddiqui AJ, Jahan S, Singh R, Saxena J, Ashraf SA, Khan A, Choudhary RK, Balakrishnan S, Badraoui R, Bardakci F, Adnan M. Plants in anticancer drug discovery: from molecular mechanism to chemoprevention. BioMed Res Int. 2022;2022(1):5425485. https://doi.org/10.1155/2022/5425485. [8] Shanu-Wilson J, Evans L, Wrigley S, Steele J, Atherton J, Boer J. Biotransformation: impact and application of metabolism in drug discovery. ACS Med Chem Lett. 2020;11(11):2087-107. https://doi.org/10.1021/acsmedchemlett.0c00202. [9] Gomes NG, Campos MG, Órfão JM, Ribeiro CA. Plants with neurobiological activity as potential targets for drug discovery. Prog Neuro-Psychopharmacol Biologic Psych. 2009;33(8):1372-89. https://doi.org/10.1016/j.pnpbp.2009.07.033. [10] Soezi M, Memarnejadian A, Aminzadeh S, Zabihollahi R, Sadat SM, Amini S, Hekmat S, Aghasadeghi MR. Toward the development of a single-round infection assay based on EGFP reporting for anti-HIV-1 drug discovery. Rep Biochem Mol Biol. 2015;1:1. [11] Maruta H, He H. PAK1-blockers: potential therapeutics against COVID-19. Med Drug Discov. 2020;6: 100039. https://doi.org/10.1016/j.medidd.2020.100039. [12] Chin YW, Balunas MJ, Chai HB, Kinghorn AD. Drug discovery from natural sources. AAPS J. 2006;2:E239-53. [13] Baillie TA, Dalvie D, Rietjens IM, Cyrus KS. Biotransformation and bioactivation reactions-2015 literature highlights. Drug Metab Rev. 2016;48(2):113-38. https://doi.org/10.1080/03602532.2016.1195404. [14] De Sousa IP, Sousa Teixeira MV, Furtado JC. An overview of biotransformation and toxicity of diterpenes. Molecules. 2018;23(6):1387. https://doi.org/10.3390/molecules23061387. [15] Frija LM, Frade RF, Afonso CA. Isolation, chemical, and biotransformation routes of labdane-type diterpenes. Chem Rev. 2011;111(8):4418-52. https://doi.org/10.1021/cr100258k. [16] O’Maille PE, Chappell J, Noel JP. Biosynthetic potential of sesquiterpene synthases: alternative products of tobacco 5-epi-aristolochene synthase. Arch Biochem Biophys. 2006;448(1-2):73-82. https://doi.org/10.1016/j.abb.2005.10.028. [17] Sultana N, Saify ZS. Enzymatic biotransformation of terpenes as bioactive agents. J Enzyme Inhib Med Chem. 2013;28(6):1113-28. https://doi.org/10.3109/14756366.2012.727411. [18] Shah SA, Tan HL, Sultan S, Mohd Faridz MA, Mohd Shah MA, Nurfazilah S, Hussain M. Microbial-catalyzed biotransformation of multifunctional triterpenoids derived from phytonutrients. Int J Mol Sci. 2014;15(7):12027-60. https://doi.org/10.3109/14756366.2012.727411. [19] Sazykin IS, Sazykina MA, Khmelevtsova LE, Seliverstova EY, Karchava KS, Zhuravleva MV. Antioxidant enzymes and reactive oxygen species level of the Achromobacter xylosoxidans bacteria during hydrocarbons biotransformation. Arch Microbiol. 2018;200(7):1057-65. https://doi.org/10.1007/s00203-018-1516-0. [20] Muffler K, Leipold D, Scheller MC, Haas C, Steingroewer J, Bley T, Neuhaus HE, Mirata MA, Schrader J, Ulber R. Biotransformation of triterpenes. Process Biochem. 2011;46(1):1-5. https://doi.org/10.1016/j.procbio.2010.07.015. [21] Zhang J, Shi J, Liu Y. Substrates and enzyme activities related to biotransformation of resveratrol from phenylalanine by Alternaria sp MG1. Appl Microbiol Biotechnol. 2013;97:9941-54. https://doi.org/10.1007/s00253-013-5212-3. [22] Pervaiz I, Ahmad S, Madni MA, Ahmad H, Khaliq FH. Microbial biotransformation: a tool for drug designing. Appl Biochem Microbiol. 2013;49:437-50. https://doi.org/10.1134/S0003683813050098. [23] Küçüksolak M, Üner G, Ballar Kırmızıbayrak P, Bedir E. Neuroprotective metabolites via fungal biotransformation of a novel sapogenin, cyclocephagenol. Sci Rep. 2022;12(1):18481. https://doi.org/10.1038/s41598-022-22799-5. [24] Shen P, Wang W, Xu S, Du Z, Wang W, Yu B, Zhang J. Biotransformation of erythrodiol for new food supplements with anti-inflammatory properties. J Agric Food Chem. 2020;68(21):5910-6. https://doi.org/10.1021/acs.jafc.0c01420. [25] Zhang X, Li S. Expansion of chemical space for natural products by uncommon P450 reactions. Nat Prod Rep. 2017;34(9):1061-89. https://doi.org/10.1039/C7NP00028F. [26] Fasan R. Tuning P450 enzymes as oxidation catalysts. ACS Catal. 2012;2(4):647-66. https://doi.org/10.1021/cs300001x. [27] Cook DJ, Finnigan JD, Cook K, Black GW, Charnock SJ. Cytochromes P450: History, classes, catalytic mechanism, and industrial application. Adv Protein Chem Struct Biol. 2016;105:105-26. https://doi.org/10.1016/bs.apcsb.2016.07.003. [28] Chooi YH, Hong YJ, Cacho RA, Tantillo DJ, Tang Y. A cytochrome P450 serves as an unexpected terpene cyclase during fungal meroterpenoid biosynthesis. J Am Chem Soc. 2013;135(45):16805-8. https://doi.org/10.1021/ja408966t. [29] Kamachi T, Yoshizawa K. A theoretical study on the mechanism of camphor hydroxylation by compound I of cytochrome P450. J Am Chem Soc. 2003;125(15):4652-61. https://doi.org/10.1021/ja0208862. [30] Li JF, Jiang HB, Jeewon R, Hongsanan S, Bhat DJ, Tang SM, Lumyong S, Mortimer PE, Xu JC, Camporesi E, Bulgakov TS. Alternaria: update on species limits, evolution, multi-locus phylogeny, and classification. Studies Fungi. 2023;8(1):1-61. [31] Xin XL, Deng S, Zhang BJ, Huang SS, Tian Y, Ma XC, An L, Shu XH, Yao JH, Cui X. Microbial transformation of deoxyandrographolide by Alternaria alternata AS 3.4578. Nat Prod Commun. 2011;6(6):1934578X1100600609. https://doi.org/10.1177/1934578X1100600609. [32] Liu DL, Liu Y, Qiu F, Gao Y, Zhang JZ. Biotransformation of oleanolic acid by Alternaria longipes and Penicillium adametzi. J Asian Nat Prod Res. 2011;13(02):160-7. https://doi.org/10.1080/10286020.2010.547028. [33] Mei RF, Shi YX, Gan JL, Deng SP, Ding H, Cai L, Ding ZT. Interaction between Alternaria alternata and monoterpenoids caused by fungal self-protection. Process Biochem. 2021;110:142-50. https://doi.org/10.1016/j.procbio.2021.08.003. [34] Wang H, Guo Y, Luo Z, Gao L, Li R, Zhang Y, Kalaji HM, Qiang S, Chen S. Recent advances in Alternaria phytotoxins: a review of their occurrence, structure, bioactivity, and biosynthesis. J Fungus. 2022;8(2):168. https://doi.org/10.3390/jof8020168. [35] Lou J, Fu L, Peng Y, Zhou L. Metabolites from Alternaria fungi and their bioactivities. Molecules. 2013;18(5):5891-935. https://doi.org/10.3390/molecules18055891. [36] Xin XL, Dong PP, Wang G, Xi RG, Liu D, Wu ZM, Sun XC, Lan R, Wang XB. Biotransformation of osthole by Alternaria longipes. J Asian Nat Prod Res. 2013;15(7):717-22. https://doi.org/10.1080/10286020.2013.795951. [37] Alastruey-Izquierdo A, Cuesta I, Ros L, Mellado E, Rodriguez-Tudela JL. Antifungal susceptibility profile of clinical Alternaria spp identified by molecular methods. J Antimicrob Chemother. 2011;66(11):2585-7. https://doi.org/10.1093/jac/dkr365. [38] Bedir E, Karakoyun Ç, Doğan G, Kuru G, Küçüksolak M, Yusufoğlu H. New cardenolides from biotransformation of gitoxigenin by the endophytic fungus Alternaria eureka 1E1BL1: characterization and cytotoxic activities. Molecules. 2021;26(10):3030. https://doi.org/10.3390/molecules26103030. [39] Puntscher H, Aichinger G, Grabher S, Attakpah E, Krüger F, Tillmann K, Motschnig T, Hohenbichler J, Braun D, Plasenzotti R, Pahlke G. Bioavailability, metabolism, and excretion of a complex Alternaria culture extract versus altertoxin II: a comparative study in rats. Arch Toxicol. 2019;93:3153-67. https://doi.org/10.3390/molecules26103030. [40] Wang Y, Xiang L, Chen M, Zhang ZX, He X. Substrate specificity for the 2α-hydroxylation of ursolic acid by Alternaria alternata and the antitumor activities of those metabolites. J Mol Catal B Enzym. 2012;83:51-6. https://doi.org/10.1016/j.molcatb.2012.07.005. [41] Fanele A, Ndlovu SI. Endophytic fungal species Nigrospora oryzae and Alternaria alternata exhibit antimicrobial activity against gram-positive and gram-negative multi-drug resistant clinical bacterial isolates. BMC Comp Med Ther. 2023;23(1):323. https://doi.org/10.1186/s12906-023-04157-8. [42] Özçınar O, Tağ O, Yusufoglu H, Kivçak B, Bedir E. Biotransformation of neoruscogenin by the endophytic fungus Alternaria eureka. J Nat Prod. 2018;81(6):1357-67. https://doi.org/10.1021/acs.jnatprod.7b00898. [43] Guengerich FP, Tateishi Y, McCarty KD. CC bond cleavage reactions catalyzed by cytochrome P450 enzymes. Med Chem Res. 2023;32(7):1263-77. https://doi.org/10.1007/s00044-023-03078-y. [44] Rico-Martínez M, Medina FG, Marrero JG, Osegueda-Robles S. Biotransformation of diterpenes. RSC Adv. 2014;4(21):10627-47. https://doi.org/10.1039/C3RA45146A. [45] Dai J. Chemo-enzymatic transformation of taxanes and their reversal activity towards MDR tumor cells. Curr Top Med Chem. 2009;9(17):1625-35. https://doi.org/10.2174/156802609789941924. [46] Hannemann F, Bichet A, Ewen KM, Bernhardt R. Cytochrome P450 systems—biological variations of electron transport chains. Biochim Biophys Acta Gen Subj. 2007;1770(3):330-44. https://doi.org/10.1016/j.bbagen.2006.07.017. [47] Ye M, Guo D. Substrate specificity for the 12β-hydroxylation of bufadienolides by Alternaria alternata. J Biotech. 2005;117(3):253-62. https://doi.org/10.1021/cs300001x. [48] Hernandez XE, Sanz MK, Giordano OS. Production of 6-β-hydroxygrindelic acid from grindelic acid by Alternaria alternata. Biotechnol Lett. 1997. https://doi.org/10.1023/A:1018494005985. [49] Tang YJ, Zhao W, Li HM. Novel tandem biotransformation process for the biosynthesis of a novel compound, 4-(2, 3, 5, 6-tetramethylpyrazine-1)-4'-demethylepipodophyllotoxin. App Environ Microbiol. 2011;77(9):3023-34. https://doi.org/10.1128/aem.03047-10. [50] Mei RF, Shi YX, Duan WH, Ding H, Zhang XR, Cai L, Ding ZT. Biotransformation of α-terpineol by Alternaria alternata. RSC Adv. 2020;10(11):6491-6. https://doi.org/10.1039/C9RA08042B. [51] Gomes DB, Zanchet B, Locateli G, Benvenutti RC, Vechia CA, Schönell AP, Diel KA, Zilli GA, Miorando D, Ernetti J, Oliveira B. Antiproliferative potential of solidagenone isolated of Solidago chilensis. Rev Bras Farmacogn. 2018;28:703-9. https://doi.org/10.1016/j.bjp.2018.09.001. [52] Schmeda-Hirschmann G, Rodriguez J, Astudillo L. Gastroprotective activity of the diterpene solidagenone and its derivatives on experimentally induced gastric lesions in mice. J Ethnopharmacol. 2002;81(1):111-5. https://doi.org/10.1016/S0378-8741(02)00054-5. [53] Schmeda-Hirschmann G, Astudillo L, Palenzuela JA. Biotransformation of solidagenone by Alternaria alternata, Aspergillus niger and Curvularia lunata cultures. World J Microbiol Biotechnol. 2004;20:93-7. https://doi.org/10.1023/B:WIBI.0000013317.60257.33. [54] Karakoyun Ç, Küçüksolak M, Bilgi E, Doğan G, Çömlekçi YE, Bedir E. Five new cardenolides transformed from oleandrin and nerigoside by Alternaria eureka 1E1BL1 and Phaeosphaeria sp 1E4CS-1 and their cytotoxic activities. Phytochem Lett. 2021;41:152-7. https://doi.org/10.1016/j.phytol.2020.12.003. [55] Duman S, Ekiz G, Yılmaz S, Yusufoglu H, Kırmızıbayrak PB, Bedir E. Telomerase activators from 20 (27)-octanor-cycloastragenol via biotransformation by the fungal endophytes. Bioinorg Chem. 2021;109: 104708. https://doi.org/10.1016/j.bioorg.2021.104708. [56] Pedras MS, Abdoli A. Biotransformation of rutabaga phytoalexins by the fungus Alternaria brassicicola: unveiling the first hybrid metabolite derived from a phytoalexin and a fungal polyketide. Bioinorg Med Chem. 2017;25(2):557-67. https://doi.org/10.1016/j.bmc.2016.11.017. [57] Capel CS, de Souza AC, de Carvalho TC, de Sousa JP, Ambrósio SR, Martins CH, Cunha WR, Galán RH, Furtado NA. Biotransformation using Mucor rouxii for the production of oleanolic acid derivatives and their antimicrobial activity against oral pathogens. J Ind Microbiol Biotechnol. 2011;38(9):1493-8. https://doi.org/10.1007/s10295-010-0935-y. [58] Dong LB, Zhang X, Rudolf JD, Deng MR, Kalkreuter E, Cepeda AJ, Renata H, Shen B. Cryptic and stereospecific hydroxylation, oxidation, and reduction in platensimycin and platencin biosynthesis. J Am Chem Soc. 2019;141(9):4043-50. https://doi.org/10.1021/jacs.8b13452. [59] Ekiz G, Duman S, Bedir E. Biotransformation of cyclocanthogenol by the endophytic fungus Alternaria eureka 1E1BL1. Phytochem. 2018;151:91-8. https://doi.org/10.1016/j.phytochem.2018.04.006. [60] Deng S, Zhang BJ, Wang CY, Tian Y, Yao JH, An L, Huang SS, Peng JY, Liu KX, Ma XC. Microbial transformation of deoxyandrographolide and their inhibitory activity on LPS-induced NO production in RAW 264.7 macrophages. Bioorg Med Chem Lett. 2012;22(4):1615-8. https://doi.org/10.1016/j.bmcl.2011.12.122. [61] Li FY, Cang PR, Huang SS, Zhang BJ, Xin XL, Yao JH, Zhou Q, Tian Y, Deng S, Ma XC. Microbial transformation of deoxyandrographolide by Cunninghamella echinulata. J Mol Catal B Enzym. 2011;68(2):187-91. https://doi.org/10.1016/j.molcatb.2010.11.001. [62] Krishnamurthy RG, Senut MC, Zemke D, Min J, Frenkel MB, Greenberg EJ, Yu SW, Ahn N, Goudreau J, Kassab M, Panickar KS. Asiatic acid, a pentacyclic triterpene from Centella asiatica, is neuroprotective in a mouse model of focal cerebral ischemia. J Neurosci Res. 2009;87(11):2541-50. https://doi.org/10.1002/jnr.22071. [63] He WN, Dai JG, Ye M, Wu LJ, Guo DA. Microbial transformation of asiatic acid by Alternaria longipes. J Asian Nat Prod Res. 2010;12(9):760-4. https://doi.org/10.1080/10286020.2010.501505. [64] Allendes JA, Bustos DA, Pacciaroni AD, Sosa VE, Bustos DA. Microbial functionalization of (-)-ambroxide by filamentous fungi. Biocatal Biotransform. 2011;29(2-3):83-6. https://doi.org/10.3109/10242422.2011.578211. [65] Liu J, Tang W, Chen R, Dai J. Microbial Transformation of 14-Anhydrodigoxigenin by Alternaria alternata. Chem Biodiversity. 2015;12(12):1871-80. https://doi.org/10.1002/cbdv.201500024. [66] Ye M, Guo D. Substrate specificity for the 12β-hydroxylation of bufadienolides by Alternaria alternata. J Biotechnol. 2005;117(3):253-62. https://doi.org/10.1016/j.jbiotec.2005.02.002. [67] Huang H. Chemo-enzymatic synthesis of oligosaccharides and carbohydrate mimetics: Applications to the study of cell-adhesion events. The Scripps Research Institute. 1995. [68] Kocaadam B, Şanlier N. Curcumin, an active component of turmeric (Curcuma longa), and its effects on health. Crit Rev Food Sci Nutr. 2017;57(13):2889-95. https://doi.org/10.1080/10408398.2015.1077195. [69] Li P, Su R, Yin R, Lai D, Wang M, Liu Y, Zhou L. Detoxification of mycotoxins through biotransformation. Toxins. 2020;12(2):121. https://doi.org/10.3390/toxins12020121. [70] Monti D, Ottolina G, Carrea G, Riva S. Redox reactions catalyzed by isolated enzymes. Chem Rev. 2011;111(7):4111-40. https://doi.org/10.1021/cr100334x. [71] Martin GDA, McKenzie C, Moore M. Synthesis and bioconversion of curcumin analogs. Nat Prod Commun. 2017. https://doi.org/10.1177/1934578X1701200424. [72] Aminudin NI, Amran NA, Zainal Abidin ZA, Susanti D. Biotransformation of curcumin and structure-activity relationship (SAR) of its analogues: a systematic review. Biocatal Biotransform. 2022;41(1):1-14. https://doi.org/10.1080/10242422.2022.2073227. [73] Thangaleela S, Sivamaruthi BS, Kesika P, Tiyajamorn T, Bharathi M, Chaiyasut C. A narrative review on the bioactivity and health benefits of alpha-phellandrene. Sci Pharm. 2022;90(4):57. https://doi.org/10.3390/scipharm90040057. [74] Sun M, Sun M, Zhang J. Osthole: An overview of its sources, biological activities, and modification development. Med Chem Res. 2021;30(10):1767-94. https://doi.org/10.1007/s00044-021-02775-w. [75] Zhang ZR, Leung WN, Cheung HY, Chan CW. Osthole: a review on its bioactivities, pharmacological properties, and potential as alternative medicine. Evidence-Based Complementary Altern Med. 2015;2015(1): 919616. https://doi.org/10.1155/2015/919616. [76] You L, Feng S, An R, Wang X. Osthole: a promising lead compound for drug discovery from a traditional Chinese medicine (TCM). Nat Prod Commun. 2009. https://doi.org/10.1177/1934578X0900400227. [77] Gao H, Zehl M, Kaehlig H, Schneider P, Stuppner H, Moreno Y, Banuls L, Kiss R, Kopp B. Rapid structural identification of cytotoxic bufadienolide sulfates in toad venom from Bufo melanosticus by LC-DAD-MSn and LC-SPE-NMR. J Nat Prod. 2010;73(4):603-8. https://doi.org/10.1021/np900746k. [78] Zhang X, Ye M, Dong YH, Hu HB, Tao SJ, Chen GT, Yin J, Guo DA. Biotransformation of arenobufagin and cinobufotalin by Alternaria alternata. Biocatal Biotransform. 2011;29(2-3):96-101. https://doi.org/10.3109/10242422.2011.578248. [79] Zhang DM, Liu JS, Deng LJ, Chen MF, Yiu A, Cao HH, Tian HY, Fung KP, Kurihara H, Pan JX, Ye WC. Arenobufagin, a natural bufadienolide from toad venom, induces apoptosis and autophagy in human hepatocellular carcinoma cells through inhibition of PI3K/Akt/mTOR pathway. Carcinogenesis. 2013;34(6):1331-42. https://doi.org/10.1093/carcin/bgt060. [80] Fuloria S, Mehta J, Chandel A, Sekar M, Rani NN, Begum MY, Subramaniyan V, Chidambaram K, Thangavelu L, Nordin R, Wu YS. A comprehensive review on the therapeutic potential of Curcuma longa Linn in relation to its major active constituent curcumin. Front Pharmacol. 2022;13:820806. https://doi.org/10.1080/10408398.2015.1077195. [81] Younis AM, Ibrahim AR, Ibrahim SM, AboulSoud KA, Kabbash AM. Microbial transformation of curcumin and evaluation of the biological activities of the isolated metabolites. J Pharm Sci Res. 2016;8(10):1169. [82] Radice M, Durofil A, Buzzi R, Baldini E, Martínez AP, Scalvenzi L, Manfredini S. Alpha-phellandrene and alpha-phellandrene-rich essential oils: a systematic review of biological activities, pharmaceutical and food applications. Life. 2022;12(10):1602. https://doi.org/10.3390/life12101602. [83] İşcan G, Kırımer N, Demirci F, Demirci B, Noma Y, Başer KH. Biotransformation of (-)-(R)-α-phellandrene: antimicrobial activity of its major metabolite. Chem Biodiversity. 2012;9(8):1525-32. https://doi.org/10.1002/cbdv.201100283. [84] Wong SH, Bell SG, De Voss JJ. P450 catalysed dehydrogenation. Pure Appl Chem. 2017;89(6):841-52. https://doi.org/10.1007/s00044-021-02775-w. [85] Feng LM, Ji S, Qiao X, Li ZW, Lin XH, Ye M. Biocatalysis of cycloastragenol by Syncephalastrum racemosum and Alternaria alternata to discover anti-aging derivatives. ACS. 2015;357(8):1928-40. https://doi.org/10.1002/adsc.201401158. [86] Kuban M, Ongen G, Bedir E. Biotransformation of cycloastragenol by Cunninghamella blakesleeana NRRL 1369 resulting in a novel framework. Org Lett. 2010;12(19):4252-5. https://doi.org/10.1021/ol101642a. [87] Lu J, Deng S, Chen H, Hou J, Zhang B, Tian Y, Wang C, Ma X. Microbial transformation of cinobufotalin by Alternaria alternate AS 3.4578 and Aspergillus niger AS 3739. Mol Catal B Enzym. 2013;89:102-7. https://doi.org/10.1016/j.molcatb.2012.12.015. [88] Singh RP, Reddy CR. Unraveling the functions of the macroalgal microbiome. Front Microbiol. 2016;6:1488. https://doi.org/10.3389/fmicb.2015.01488. [89] Di Nardo G, Gilardi G. Natural compounds as pharmaceuticals: the key role of cytochromes P450 reactivity. Trends Biochem Sci. 2020;45(6):511-25. https://doi.org/10.1016/j.tibs.2020.03.004. [90] Li Y, Zhang C, Kong K, Yan X. Characterization and biological activities of four biotransformation products of diosgenin from Rhodococcus erythropolis. Molecules. 2023;28(7):3093. https://doi.org/10.3390/molecules28073093. [91] Bianchini LF, Arruda MFC, Vieira SR, Campelo PMS, Grégio AMT, Rosa EAR. Microbial biotransformation to obtain new antifungals. Front Microbiol. 2015;6:1433. https://doi.org/10.3389/fmicb.2015.01433. [92] Chartrain M, Sturr M. Fungal bioconversions: applications to the manufacture of pharmaceuticals in handbook of industrial mycology. Mycology Marcel: Dekker; 2005. [93] Liu X, Zhou ZY, Cui JL, Wang ML, Wang JH. Biotransformation ability of endophytic fungi: from species evolution to industrial applications. Appl Microbiol Biotechnol. 2021;105:7095-113. https://doi.org/10.1007/s00253-021-11554-x. [94] Torres-Mendoza D, Ortega HE, Cubilla-Rios L. Patents on endophytic fungi related to secondary metabolites and biotransformation applications. J Fungi. 2020;6(2):58. https://doi.org/10.3390/jof6020058. [95] Fujii Y, Kabumoto H, Nishimura K, Fujii T, Yanai S, Takeda K, Tamura N, Arisawa A, Tamura T. Purification, characterization, and directed evolution study of a vitamin D3 hydroxylase from Pseudonocardia autotrophica. Biochem Bioph Res Comm. 2009;385(2):170-5. https://doi.org/10.1016/j.bbrc.2009.05.033. [96] Nguyen NA, Cao NT, Nguyen TH, Le TK, Cha GS, Choi SK, Pan JG, Yeom SJ, Kang HS, Yun CH. Regioselective hydroxylation of phloretin, a bioactive compound from apples, by human cytochrome P450 enzymes. Pharmaceuticals. 2020;13(11):330. https://doi.org/10.3390/ph13110330. [97] Li Z, Jiang Y, Guengerich FP, Ma L, Li S, Zhang W. Engineering cytochrome P450 enzyme systems for biomedical and biotechnological applications. J Biol Chem. 2020;295(3):833-49. https://doi.org/10.1016/S0021-9258(17)49939-X. [98] Bernhardt R, Urlacher VB. Cytochromes P450 as promising catalysts for biotechnological application: chances and limitations. Appl Microbiol Biotechnol. 2014;98:6185-203. https://doi.org/10.1007/s00253-014-5767-7. [99] Zhang C, Liu J, Zhao F, Lu C, Zhao GR, Lu W. Production of sesquiterpenoid zerumbone from metabolic engineered Saccharomyces cerevisiae. Metab Eng. 2018;49:28-35. https://doi.org/10.1016/j.ymben.2018.07.010. [100] Paddon CJ, Westfall PJ, Pitera DJ, Benjamin K, Fisher K, McPhee D, Leavell MD, Tai A, Main A, Eng D, Polichuk DR, Teoh KH, Reed DW, Treynor T, Lenihan J, Jiang H, Fleck M, Bajad S, Dang G, Dengrove D, Diola D, Dorin G, Ellens KW, Fickes S, Galazzo J, Gaucher SP, Geistlinger T, Henry R, Hepp M, Horning T, Iqbal T, Kizer L, Lieu B, Melis D, Moss N, Regentin R, Secrest S, Tsuruta H, Vazquez R, Westblade LF, Xu L, Yu M, Zhang Y, Zhao L, Lievense J, Covello PS, Keasling JD, Reiling KK, Renninger NS, Newman JD. High-level semi-synthetic production of the potent antimalarial artemisinin. Nature. 2013;496:528-32. https://doi.org/10.1038/nature12051. |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|