ORIGINAL ARTICLES |
|
|
|
|
|
Xiaoyankangjun tablet alleviates dextran sulfate sodium-induced colitis in mice by regulating gut microbiota and JAK2/STAT3 pathway |
Suqin Yang1, Jingtao Huang2, Wenjing Tan1, Xiankun Xia1, Dali Gan1, Yalei Ren1, Hanwen Su2, Meixian Xiang1 |
1. School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, Hubei, People's Republic of China; 2. Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, People's Republic of China |
|
|
Abstract Xiaoyankangjun tablet (XYKJP) is a traditional Chinese medicine formulation used to treat intestinal disorders in clinical practice. However, the specific therapeutic mechanism of action of XYKJP in colitis has not yet been elucidated. This study aimed to reveal the multifaceted mechanisms of action of XYKJP in treating colitis. The model established based on DSS-induced colitis in C57BL/6 mice was employed to estimate the effect of XYKJP on colitis, which was then followed by histological assessment, 16S rRNA sequencing, RT-qPCR, ELISA, and Western blot. XYKJP alleviated the symptoms of DSS-induced colitis mainly by reducing oxidative stress, inflammatory responses, and intestinal mucosal repair in colitis tissues. In addition, XYKJP regulated the intestinal flora by increasing the relative abundance of Akkermansia and Bifidobacterium and reducing the relative abundance of Coriobacteriaceae_UCG-002. Mechanistically, XYKJP increased the content of short-chain fatty acids (SCFAs) in the feces, particularly propanoic acid and butyric acid, activated their specific receptor GPR43/41, furthermore activated the Nrf2/HO-1 pathway, and suppressed the JAK2/STAT3 pathway. XYKJP significantly alleviated the symptoms of experimental colitis and functioned synergistically by regulating the intestinal flora, increasing the production of SCFAs, and activating their specific receptors, thereby repressing oxidative stress and inflammation.
|
Keywords
Xiaoyankangjun tablet
Colitis
Nrf2/HO-1 pathways and JAK2/STAT3 pathways
Tight junction proteins
Gut microbiota
GPR43/41 receptor
|
Fund:This work was supported by the National Natural Science Foundation of China (81902141), the Knowledge Innovation Program of Wuhan-Basic Research (2022020801010402), The Fundamental Research Funds for the Central Universities South-Central MinZu University (Grant Numbers: CZZ24017 and CSZY22002), and the Fundamental Research Funds for Health Commission of Hubei Province (ZY2023M022); The Natural Science Foundation of Hubei Province (2024AFD252, 2022CFB127). |
Corresponding Authors:
Hanwen Su,E-mail:Suhanwen-1@163.com;Meixian Xiang,E-mail:xiangmeixian@mail.scuec.edu.cn
E-mail: Suhanwen-1@163.com;xiangmeixian@mail.scuec.edu.cn
|
Issue Date: 14 October 2024
|
|
|
[1] Le Berre C, Honap S, Peyrin-Biroulet L. Ulcerative colitis. Lancet. 2023;402(10401):571-84. https://doi.org/10.1016/S0140-6736(23)00966-2. [2] Graham DB, Xavier RJ. Pathway paradigms revealed from the genetics of inflammatory bowel disease. Nature. 2020;578(7796):527-39. https://doi.org/10.1038/s41586-020-2025-2. [3] Agrawal M, Allin KH, Mehandru S, Faith J, Jess T, Colombel J-F. The appendix and ulcerative colitis - an unsolved connection. Nat Rev Gastro Hepat. 2023;20(9):615-24. https://doi.org/10.1038/s41575-023-00774-3. [4] Sandborn WJ, Vermeire S, Peyrin-Biroulet L, Dubinsky MC, Panes J, Yarur A, et al. Etrasimod as induction and maintenance therapy for ulcerative colitis (ELEVATE): two randomised, double-blind, placebo-controlled, phase 3 studies. Lancet. 2023;401(10383):1159-71. https://doi.org/10.1016/S0140-6736(23)00061-2. [5] Lopetuso LR, Deleu S, Godny L, Petito V, Puca P, Facciotti F, et al. The first international Rome consensus conference on gut microbiota and faecal microbiota transplantation in inflammatory bowel disease. Gut. 2023;72(9):1642-50. https://doi.org/10.1136/gutjnl-2023-329948. [6] Wu Q, Wu X, Wang M, Liu K, Li Y, Ruan X, et al. Therapeutic mechanism of baicalin in experimental colitis analyzed using network pharmacology and metabolomics. Drug Des Devel Ther. 2023;17:1007-24. https://doi.org/10.2147/DDDT.S399290. [7] Han D, Wu Y, Lu D, Pang J, Hu J, Zhang X, et al. Polyphenol-rich diet mediates interplay between macrophage-neutrophil and gut microbiota to alleviate intestinal inflammation. Cell Death Dis. 2023;14(10):656. https://doi.org/10.1038/s41419-023-06190-4. [8] He H, Qin Q, Xu F, Chen Y, Rao S, Wang C, et al. Oral polyphenol-armored nanomedicine for targeted modulation of gut microbiota-brain interactions in colitis. Sci Adv. 2023;9(21):eadf3887. https://doi.org/10.1126/sciadv.adf3887. [9] Li M-Y, Wu Y-Z, Qiu J-G, Lei J-X, Li M-X, Xu N, et al. Huangqin decoction ameliorates ulcerative colitis by regulating fatty acid metabolism to mediate macrophage polarization via activating FFAR4-AMPK-PPARα pathway. J Ethnopharmacol. 2023;311:116430. https://doi.org/10.1016/j.jep.2023.116430. [10] Zhai L, Peng J, Zhuang M, Chang Y-Y, Cheng KW, Ning Z-W, et al. Therapeutic effects and mechanisms of Zhen-Wu-Bu-Qi Decoction on dextran sulfate sodium-induced chronic colitis in mice assessed by multi-omics approaches. Phytomedicine. 2022;99:154001. https://doi.org/10.1016/j.phymed.2022.154001. [11] Kimura Y, Sumiyoshi M. Two hydroxyflavanones isolated from Scutellaria baicalensis roots prevent colitis-associated colon cancer in C57BL/6 J mice by inhibiting programmed cell death-1, interleukin 10, and thymocyte selection-associated high mobility group box proteins TOX/TOX2. Phytomedicine. 2022;100:154076. https://doi.org/10.1016/j.phymed.2022.154076. [12] Zhang W, Ou L, Peng C, Sang S, Feng Z, Zou Y, et al. Sanguisorba officinalis L. enhances the 5-fluorouracil sensitivity and overcomes chemoresistance in 5-fluorouracil-resistant colorectal cancer cells via Ras/MEK/ERK and PI3K/Akt pathways. Heliyon. 2023;9(6):e16798. https://doi.org/10.1016/j.heliyon.2023.e16798. [13] Zhou P, Lai J, Li Y, Deng J, Zhao C, Huang Q, et al. Methyl gallate alleviates acute ulcerative colitis by modulating gut microbiota and inhibiting TLR4/NF-κB pathway. Int J Mol Sci. 2022;23(22):14024. https://doi.org/10.3390/ijms232214024. [14] Larsen IS, Jensen BAH, Bonazzi E, Choi BSY, Kristensen NN, Schmidt EGW, et al. Fungal lysozyme leverages the gut microbiota to curb DSS-induced colitis. Gut Microbes. 2021;13(1):1988836. https://doi.org/10.1080/19490976.2021.1988836. [15] Scaioli E, Belluzzi A, Ricciardiello L, Del Rio D, Rotondo E, Mena P, et al. Pomegranate juice to reduce fecal calprotectin levels in inflammatory bowel disease patients with a high risk of clinical relapse: study protocol for a randomized controlled trial. Trials. 2019;20(1):327. https://doi.org/10.1186/s13063-019-3321-8. [16] Haifer C, Paramsothy S, Kaakoush NO, Saikal A, Ghaly S, Yang T, et al. Lyophilised oral faecal microbiota transplantation for ulcerative colitis (LOTUS): a randomised, double-blind, placebo-controlled trial. Lancet Gastroenterol. 2022;7(2):141-51. https://doi.org/10.1016/S2468-1253(21)00400-3. [17] Lin Y, Lv Y, Mao Z, Chen X, Chen Y, Zhu B, et al. Polysaccharides from Tetrastigma Hemsleyanum Diels et Gilg ameliorated inflammatory bowel disease by rebuilding the intestinal mucosal barrier and inhibiting inflammation through the SCFA-GPR41/43 signaling pathway. Int J Biol Macromol. 2023;250:126167. https://doi.org/10.1016/j.ijbiomac.2023.126167. [18] Hsu N-Y, Nayar S, Gettler K, Talware S, Giri M, Alter I, et al. NOX1 is essential for TNFα-induced intestinal epithelial ROS secretion and inhibits M cell signatures. Gut. 2023;72(4):654-62. https://doi.org/10.1136/gutjnl-2021-326305. [19] Gan F, Lin Z, Tang J, Chen X, Huang K. Deoxynivalenol at no-observed adverse-effect levels aggravates DSS-induced colitis through the JAK2/STAT3 signaling pathway in mice. J Agric Food Chem. 2023;71(9):4144-52. https://doi.org/10.1021/acs.jafc.3c00252. [20] Maphetu N, Unuofin JO, Masuku NP, Olisah C, Lebelo SL. Medicinal uses, pharmacological activities, phytochemistry, and the molecular mechanisms of Punica granatum L. (pomegranate) plant extracts: a review. Biomed. 2022;153:113256. https://doi.org/10.1016/j.biopha.2022.113256. [21] Kim H, Banerjee N, Ivanov I, Pfent CM, Prudhomme KR, Bisson WH, et al. Comparison of anti-inflammatory mechanisms of mango (Mangifera Indica L.) and pomegranate (Punica Granatum L.) in a preclinical model of colitis. Mol Nutr Food Res. 2016;60(9):1912-23. https://doi.org/10.1002/mnfr.201501008. [22] Zhou D, Wu Y, Yan H, Shen T, Li S, Gong J, et al. Gallic acid ameliorates calcium oxalate crystal-induced renal injury via upregulation of Nrf2/HO-1 in the mouse model of stone formation. Phytomedicine. 2022;106:154429. https://doi.org/10.1016/j.phymed.2022.154429. [23] Lavelle A, Sokol H. Gut microbiota-derived metabolites as key actors in inflammatory bowel disease. Nat Rev Gastroenterol Hepatol. 2020;17(4):223-37. https://doi.org/10.1038/s41575-019-0258-z. [24] Wan Y, Yang L, Jiang S, Qian D, Duan J. Excessive apoptosis in ulcerative colitis: crosstalk between apoptosis, ROS, ER stress, and intestinal homeostasis. Inflamm Bowel Dis. 2022;28(4):639-48. https://doi.org/10.1093/ibd/izab277. [25] Zhou S, Dai Q, Huang X, Jin A, Yang Y, Gong X, et al. STAT3 is critical for skeletal development and bone homeostasis by regulating osteogenesis. Nat Commun. 2021;12(1):6891. https://doi.org/10.1038/s41467-021-27273-w. [26] Huang T, Liu Y, Zhang C. Pharmacokinetics and bioavailability enhancement of baicalin: a review. Eur J Drug Metab Pharmacokinet. 2019;44(2):159-68. https://doi.org/10.1007/s13318-018-0509-3. [27] Liang J, Zhou Y, Cheng X, Chen J, Cao H, Guo X, et al. Baicalin attenuates H2O2-induced oxidative stress by regulating the AMPK/Nrf2 signaling pathway in IPEC-J2 cells. Int J Mol Sci. 2023;24(11):9435. https://doi.org/10.3390/ijms24119435. [28] Miao Y, Zheng Y, Geng Y, Yang L, Cao N, Dai Y, et al. The role of GLS1-mediated glutaminolysis/2-HG/H3K4me3 and GSH/ROS signals in Th17 responses counteracted by PPARγ agonists. Theranostics. 2021;11(9):4531-48. https://doi.org/10.7150/thno.54803. [29] Suzuki T, Takahashi J, Yamamoto M. Molecular basis of the KEAP1-NRF2 signaling pathway. Mol Cells. 2023;46(3):133-41. https://doi.org/10.14348/molcells.2023.0028. [30] Amirshahrokhi K, Imani M. Levetiracetam attenuates experimental ulcerative colitis through promoting Nrf2/HO-1 antioxidant and inhibiting NF-κB, proinflammatory cytokines and iNOS/NO pathways. Int Immunopharmacol. 2023;119:110165. https://doi.org/10.1016/j.intimp.2023.110165. [31] Jang JY, Im E, Kim ND. Therapeutic potential of bioactive components from Scutellaria baicalensis Georgi in inflammatory bowel disease and colorectal cancer: a review. Int J Mol Sci. 2023;24(3):1954. https://doi.org/10.3390/ijms24031954. [32] Elhefnawy EA, Zaki HF, El Maraghy NN, Ahmed KA, Abd El-Haleim EA. Genistein and/or sulfasalazine ameliorate acetic acid-induced ulcerative colitis in rats via modulating INF-γ/JAK1/STAT1/IRF-1, TLR-4/NF-κB/IL-6, and JAK2/STAT3/COX-2 crosstalk. Biochem Pharmacol. 2023;214:115673. https://doi.org/10.1016/j.bcp.2023.115673. [33] Zhou J, Li M, Chen Q, Li X, Chen L, Dong Z, et al. Programmable probiotics modulate inflammation and gut microbiota for inflammatory bowel disease treatment after effective oral delivery. Nat Commun. 2022;13(1):3432. https://doi.org/10.1038/s41467-022-31171-0. [34] Park WY, Song G, Park JY, Ahn KS, Kwak HJ, Park J, et al. Ellagic acid improves benign prostate hyperplasia by regulating androgen signaling and STAT3. Cell Death Dis. 2022;13(6):554. https://doi.org/10.1038/s41419-022-04995-3. [35] Fu Y-J, Xu B, Huang S-W, Luo X, Deng X-L, Luo S, et al. Baicalin prevents LPS-induced activation of TLR4/NF-κB p65 pathway and inflammation in mice via inhibiting the expression of CD14. Acta Pharmacol Sin. 2021;42(1):88-96. https://doi.org/10.1038/s41401-020-0411-9. [36] Hu Q, Zhang W, Wu Z, Tian X, Xiang J, Li L, et al. Baicalin and the liver-gut system: pharmacological bases explaining its therapeutic effects. Pharmacol Res. 2021;165:105444. https://doi.org/10.1016/j.phrs.2021.105444. [37] Li M-X, Li M-Y, Lei J-X, Wu Y-Z, Li Z-H, Chen L-M, et al. Huangqin decoction ameliorates DSS-induced ulcerative colitis: role of gut microbiota and amino acid metabolism, mTOR pathway and intestinal epithelial barrier. Phytomedicine. 2022;100:154052. https://doi.org/10.1016/j.phymed.2022.154052. |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|