Natural Products and Bioprospecting    2023, Vol. 13 Issue (5) : 38-38     DOI: 10.1007/s13659-023-00403-1
REVIEWS |
Indonesian marine and its medicinal contribution
Ari Satia Nugraha1,5,10, Lilla Nur Firli1, Dinar Mutia Rani1, Ayunda Hidayatiningsih1, Nadya Dini Lestari1, Hendris Wongso2,3, Kustiariyah Tarman4, Ayu Christien Rahaweman5, Jeprianto Manurung6, Ni Putu Ariantari7, Adelfia Papu8, Masteria Yunovilsa Putra9, Antonius Nugraha Widhi Pratama1, Ludger A. Wessjohann5, Paul A. Keller10
1. Drug Utilisation and Discovery Research Group, Faculty of Pharmacy, Universitas Jember, Jember, 68121, Indonesia;
2. Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency, Puspiptek, Banten, 15314, Indonesia;
3. Research Collaboration Center for Theranostic Radiopharmaceuticals, National Research and Innovation Agency, J1. Raya Bandung-Sumedang KM 21, Sumedang, 45363, Indonesia;
4. Department of Aquatic Product Technology, Faculty of Fisheries and Marine Sciences;
and Division of Marine Biotechnology, Centre for Coastal and Marine Resources Studies (CCMRS), IPB University, Bogor, 16680, Indonesia;
5. Leibniz Institute Für Pflanzenbiochemie, Weinberg 3, 06120, Halle (Saale), Germany;
6. German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103, Leipzig, Germany;
7. Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Udayana University, Badung, Bali, 80361, Indonesia;
8. Biology Department, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado, 95115, Indonesia;
9. Vaccine and Drug Research Center, National Research and Innovation Agency, Cibinong, Jawa Barat, 16911, Indonesia;
10. School of Chemistry and Molecular Biosciences, Molecular Horizons, University of Wollongong, Wollongong, NSW, 2522, Australia
Download: PDF(3271 KB)   HTML ()  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  The archipelagic country of Indonesia is populated by the densest marine biodiversity in the world which has created strong global interest and is valued by both Indigenous and European settlements for different purposes. Nearly 1000 chemicals have been extracted and identified. In this review, a systematic data curation was employed to collate bioprospecting related manuscripts providing a comprehensive directory based on publications from 1988 to 2022. Findings with significant pharmacological activities are further discussed through a scoping data collection. This review discusses macroorganisms (Sponges, Ascidian, Gorgonians, Algae, Mangrove) and microorganism (Bacteria and Fungi) and highlights significant discoveries, including a potent microtubule stabilizer laulimalide from Hyattella sp., a prospective doxorubicin complement papuamine alkaloid from Neopetrosia cf exigua, potent antiplasmodial manzamine A from Acanthostrongylophora ingens, the highly potent anti trypanosomal manadoperoxide B from Plakortis cfr. Simplex, mRNA translation disrupter hippuristanol from Briareum sp, and the anti-HIV-1 (+)-8-hydroxymanzamine A isolated from Acanthostrongylophora sp. Further, some potent antibacterial extracts were also found from a limited biomass of bacteria cultures. Although there are currently no examples of commercial drugs from the Indonesian marine environment, this review shows the molecular diversity present and with the known understudied biodiversity, reveals great promise for future studies and outcomes.
Keywords Indonesian marine      Laulimalide      Papuamine      Manzamine A      Manadoperoxide B      Hippuristanol      (+)-8-Hydroxymanzamine A     
Fund:A.S.N, K.T., A.C.R., J.M., A.P., M.Y.P., N.P.A. thank to Deutscher Akademischer Austauschdienst (DAAD) for alumni networking support.
Corresponding Authors: Ari Satia Nugraha,E-mail:arisatia@unej.ac.id     E-mail: arisatia@unej.ac.id
Issue Date: 03 November 2023
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ari Satia Nugraha
Lilla Nur Firli
Dinar Mutia Rani
Ayunda Hidayatiningsih
Nadya Dini Lestari
Hendris Wongso
Kustiariyah Tarman
Ayu Christien Rahaweman
Jeprianto Manurung
Ni Putu Ariantari
Adelfia Papu
Masteria Yunovilsa Putra
Antonius Nugraha Widhi Pratama
Ludger A. Wessjohann
Paul A. Keller
Trendmd:   
Cite this article:   
Ari Satia Nugraha,Lilla Nur Firli,Dinar Mutia Rani, et al. Indonesian marine and its medicinal contribution[J]. Natural Products and Bioprospecting, 2023, 13(5): 38-38.
URL:  
http://npb.kib.ac.cn/EN/10.1007/s13659-023-00403-1     OR     http://npb.kib.ac.cn/EN/Y2023/V13/I5/38
[1] Fisheries MoMaAa. Indonesia marine and fisheries book 2017. Jakarta: Ministry of Marine and Affairs and Fisheries; 2017.
[2] Huffard CL, Erdmann MV, Gunawan TR. Geographic priorities for marine biodiversirty concervation in Indonesia. Coral Triangle Initiative: Manado; 2012.
[3] Mamesti ZS, Indonesia's interest to strengthen maritime cooperation with the united states under joko widodo administration in 2014-2018, in Internation Relation. 2018. Universitas Muhammadiyah Yogyakarta.
[4] Nugraha AS, Keller PA. Revealing indigenous indonesian traditional medicine: anti-infective agents. Nat Prod Commun. 2011;6:1953-66.
[5] Backhaus N, Globalization and marine resource use in Bali. 1998. p. 169-192.
[6] Schwerdtner Máñez K, Ferse SCA. The history of makassan trepang fishing and trade. PLoS ONE. 2010;5:1-8.
[7] Kaschner K, Kesner-Reyes K, Garilao C, Segschneider J, Rius-Barile JRT, Froese R. Aquamaps: Predicted range maps for aquatic species. 2019; https://www.aquamaps.org. Accessed 7 Nov 2022
[8] Hadi T, Muhammad A, Giyanto G, Prayudha B, Johan O, Budiyanto A, Rezza A, Alifatri L, Sulha S, Shar S. The status of indonesian coral reefs 2019. 2020.
[9] Initiative CT. Coral triangle initiative on coral reefs, fisheries and food security seascapes general model and regional framework for priority seascapes. Coral Triangle Initiative: Manado; 2017.
[10] Banner DM, Banner AH. The alpheid shrimp of indonesia. Marine Research Indonesia. 1985;25:1-7.
[11] Rothberg I, Tursch BM, Djerassi C. Terpenoids. Lxviii. 23.Xi.-acetoxy-17-deoxy-7,8-dihydroholothurinogenin, a new triterpenoid sapogenin from a sea cucumber. J Org Chem. 1973;38:209-14.
[12] Izzati F, Warsito MF, Bayu A, Prasetyoputri A, Atikana A, Sukmarini L, Rahmawati SI, Putra MY. Chemical diversity and biological activity of secondary metabolites isolated from indonesian marine invertebrates. Molecules. 2021;26:1-22. https://doi.org/10.3390/molecules26071898.
[13] Hanif N, Murni A, Tanaka C, Tanaka J. Marine natural products from indonesian waters. Mar Drugs. 2019;17:1-69. https://doi.org/10.3390/md17060364.
[14] Yamazaki H. Exploration of marine natural resources in indonesia and development of efficient strategies for the production of microbial halogenated metabolites. J Nat Med. 2022;76:1-19.
[15] Van Soest RW, Boury-Esnault N, Vacelet J, Dohrmann M, Dohrmann M, Erpenbeck D, De Voogd NJ, Santodomingo N, Vanhoorne B, Kelly M, Hooper JNA. Global diversity of sponges (porifera). PLoS ONE. 2012;7:1-23.
[16] de Voogd NJ, Alvarez B, Boury-Esnault N, Carballo JL, Cárdenas P, Díaz M-C, Dohrmann M, Downey R, Hajdu E, Hooper JNA, Kelly M, Klautau M, Manconi R, Morrow CCP, A.B., Ríos P, Rützler K, Schönberg C, Vacelet JvS, R.W.M. World porifera database. 2022.
[17] Hadi TA, Hafizt M, Hadiyanto H, Budiyanto A, Siringoringo RM. Shallow water sponges along the south coast of Java, Indonesia. Biodiversitas. 2018;19:485-93.
[18] Skropeta D, Wei L. Recent advances in deep-sea natural products. Nat Prod Rep. 2014;31:999-1025.
[19] Folkers M, Rombouts T, Sponges revealed: a synthesis of their overlooked ecological functions within aquatic ecosystems, in Youmares 9 - the oceans: Our research, our future: Proceedings of the 2018 conference for young marine researcher in oldenburg, germany, S Jungblut, V Liebich, and M Bode-Dalby, Editors. 2020. Springer International Publishing: Cham. p. 181-193.
[20] Aulia ED, Hadi TA, Utama RS. Sponge community (porifera) in coral reef ecosystem in Sabang, Aceh province, Indonesia. Biodiversitas. 2021;22:3394-402.
[21] Chu M-J, Li M, Ma H, Li P-L, Li G-Q. Secondary metabolites from marine sponges of the genus agelas: a comprehensive update insight on structural diversity and bioactivity. RSC Adv. 2022;12:7789-820.
[22] Ohte S, Yamazaki H, Takahashi O, Rotinsulu H, Wewengkang DS, Sumilat DA, Abdjul DB, Maarisit W, Kapojos MM, Zhang H, Hayashi F, Namikoshi M, Katagiri T, Tomoda H, Uchida R. Inhibitory effects of sesquiterpene lactones from the indonesian marine sponge lamellodysidea cf. Herbacea on bone morphogenetic protein-induced osteoblastic differentiation. Bioorg Med Chem Lett. 2021;35:1-4.
[23] Murtihapsari M, Salam S, Kurnia D, Darwati D, Kadarusman K, Abdullah FF, Herlina T, Husna MH, Awang K, Shiono Y, Azmi MN, Supratman U. A new antiplasmodial sterol from indonesian marine sponge, xestospongia sp. Nat Prod Res. 2021;35:937-44.
[24] Hu Y, Chen J, Hu G, Yu J, Zhu X, Lin Y, Chen S, Yuan J. Statistical research on the bioactivity of new marine natural products discovered during the 28 years from 1985 to 2012. Mar Drugs. 2015;13:202-21. https://doi.org/10.3390/md13010202.
[25] Corley DG, Herb R, Moore RE, Scheuer PJ, Paul VJ. Laulimalides. New potent cytotoxic macrolides from a marine sponge and a nudibranch predator. J Org Chem. 1988;53:3644-6.
[26] Field JJ, Kanakkanthara A, Miller JH. Microtubule-targeting agents are clinically successful due to both mitotic and interphase impairment of microtubule function. Bioorg Med Chem. 2014;22:5050-9.
[27] Lu H, Murtagh J, Schwartz EL. The microtubule binding drug laulimalide inhibits vascular endothelial growth factor-induced human endothelial cell migration and is synergistic when combined with docetaxel (taxotere). Mol Pharmacol. 2006;69:1207-15.
[28] Mooberry SL, Tien G, Hernandez AH, Plubrukarn A, Davidson BS. Laulimalide and isolaulimalide, new paclitaxel-like microtubule-stabilizing agents. Cancer Res. 1999;59:653-60.
[29] Ahmed A, Hoegenauer EK, Enev VS, Hanbauer M, Kaehlig H, Öhler E, Mulzer J. Total synthesis of the microtubule stabilizing antitumor agent laulimalide and some nonnatural analogues: the power of sharpless’ asymmetric epoxidation. J Org Chem. 2003;68:3026-42.
[30] Mooberry SL, Randall-Hlubek DA, Leal RM, Hegde SG, Hubbard RD, Zhang L, Wender PA. Microtubule-stabilizing agents based on designed laulimalide analogues. PNAS. 2004;101:8803-8.
[31] Paterson I, Menche D, Håkansson AE, Longstaff A, Wong D, Barasoain I, Buey RM, Díaz JF. Design, synthesis and biological evaluation of novel, simplified analogues of laulimalide: modification of the side chain. Bioorg Med Chem Lett. 2005;15:2243-7.
[32] Abdjul DB, Yamazaki H, Takahashi O, Kirikoshi R, Mangindaan REP, Namikoshi M. Two new protein tyrosine phosphatase 1b inhibitors, hyattellactones a and b, from the indonesian marine sponge hyattella sp. Bioorg Med Chem Lett. 2015;25:904-7.
[33] Carney JR, Scheuer PJ, Kelly-Borges M. Makaluvamine g, a cytotoxic pigment from an indonesian sponge histodermella sp. Tetrahedron. 1993;49:8483-6.
[34] Delfourne E. Analogues of marine pyrroloiminoquinone alkaloids: synthesis and antitumor properties. Anti-Cancer Agents Med Chem. 2008;8:910-6.
[35] Antunes EM, Copp BR, Davies-Coleman MT, Samaai T. Pyrroloiminoquinone and related metabolites from marine sponges. Nat Prod Rep. 2005;22:62-72.
[36] Eder C, Proksch P, Wray V, Steube K, Bringmann G, Van Soest RWM, Sudarsono, Ferdinandus E, Pattisina LA, Wiryowidagdo S, Moka W. New alkaloids from the indopacific sponge stylissa carteri. J Nat Prod. 1999;62:184-7.
[37] Ebada SS, Linh MH, Longeon A, de Voogd NJ, Durieu E, Meijer L, Bourguet-Kondracki M-L, Singab ANB, Mueller WEG, Proksch P. Dispacamide e and other bioactive bromopyrrole alkaloids from two indonesian marine sponges of the genus stylissa. Nat Prod Res. 2015;29:231-8.
[38] Wan Y, Hur W, Cho CY, Liu Y, Adrian FJ, Lozach O, Bach S, Mayer T, Fabbro D, Meijer L, Gray NS. Synthesis and target identification of hymenialdisine analogs. Chem Biol. 2004;11:247-59.
[39] Pettit GR, Nogawa T, Knight JC, Doubek DL, Hooper JNA. Antineoplastic agents. 535. Isolation and structure of plakorstatins 1 and 2 from the indo-pacific sponge plakortis nigra. J Nat Prod. 2004;67:1611-3.
[40] Holzwarth M, Trendel J-M, Albrecht P, Maier A, Michaelis W. Cyclic peroxides derived from the marine sponge plakortis simplex. J Nat Prod. 2005;68:759-61.
[41] Liang Z, Sulzmaier FJ, Yoshida WY, Kelly M, Ramos JW, Williams PG. Neopetrocyclamines a and b, polycyclic diamine alkaloids from the sponge neopetrosia cf exigua. J Nat Prod. 2015;78:543-7.
[42] Yamazaki H, Wewengkang DS, Kanno S-I, Ishikawa M, Rotinsulu H, Mangindaan REP, Namikoshi M. Papuamine and haliclonadiamine, obtained from an indonesian sponge haliclona sp., inhibited cell proliferation of human cancer cell lines. Nat Prod Res. 2013;27:1012-5.
[43] Kanno S-I, Yomogida S, Tomizawa A, Yamazaki H, Ukai K, Mangindaan REP, Namikoshi M, Ishikawa M. Papuamine causes autophagy following the reduction of cell survival through mitochondrial damage and jnk activation in mcf-7 human breast cancer cells. Int J Oncol. 2013;43:1413-9.
[44] Kanno S-I, Yomogida S, Tomizawa A, Yamazaki H, Ukai K, Mangindaan REP, Namikoshi M, Ishikawa M. Combined effect of papuamine and doxorubicin in human breast cancer mcf-7 cells. Oncol Lett. 2014;8:547-50.
[45] Park SK, Jurek J, Carney JR, Scheuer PJ. Two more bastadins, 16 and 17, from an indonesian sponge ianthella basta. J Nat Prod. 1994;57:407-10.
[46] Park SK, Park H, Scheuer PJ. Isolation and structure determination of a new bastadin from the marine sponge ianthella basta. Bull Korean Chem Soc. 1994;15:534-7.
[47] Park SK, Ryu JK, Scheuer PJ. Isolation and structure determination of a new bastadin from an Indonesian sponge ianthella basta. Bull Korean Chem Soc. 1995;16:677-9.
[48] Niemann H, Lin W, Mueller WEG, Kobbutat M, Lai D, Proksch P. Trimeric hemibastadin congener from the marine sponge ianthella basta. J Nat Prod. 2013;76:121-5.
[49] Kotoku N, Hiramatsu A, Tsujita H, Hirakawa Y, Sanagawa M, Aoki S, Kobayashi M. Structure-activity relationships study of bastadin 6, an anti-angiogenic brominated-tyrosine derived metabolite from marine sponge. Arch Pharm. 2008;341:568-77.
[50] Handayani D, Edrada RA, Proksch P, Wray V, Witte L, Van Soest RWM, Kunzmann A, Soedarsono. Four new bioactive polybrominated diphenyl ethers of the sponge dysidea herbacea from west sumatra, indonesia. J Nat Prod. 1997;60:1313-6.
[51] Elkhayat E, Edrada R, Ebel R, Wray V, van Soest R, Wiryowidagdo S, Mohamed MH, Mueller WEG, Proksch P. New luffariellolide derivatives from the indonesian sponge acanthodendrilla sp. J Nat Prod. 2004;67:1809-17.
[52] Aoki S, Watanabe Y, Tanabe D, Setiawan A, Arai M, Kobayashi M. Cortistatins j, k, l, novel abeo-9(10-19)-androstane-type steroidal alkaloids with isoquinoline unit, from marine sponge corticium simplex. Tetrahedron Lett. 2007;48:4485-8.
[53] Nicolaou KC, Peng X-S, Sun Y-P, Polet D, Zou B, Lim CS, Chen DYK. Total synthesis and biological evaluation of cortistatins a and j and analogues thereof. J Am Chem Soc. 2009;131:10587-97.
[54] Ibrahim SRM, Edrada-Ebel R, Mohamed GA, Youssef DTA, Wray V, Proksch P. Callyaerin g, a new cytotoxic cyclic peptide from the marine sponge callyspongia aerizusa. ARKIVOC. 2008;2008:164-71.
[55] Ibrahim SRM, Min CC, Teuscher F, Ebel R, Kakoschke C, Lin W, Wray V, Edrada-Ebel R, Proksch P. Callyaerins a-f and h, new cytotoxic cyclic peptides from the indonesian marine sponge callyspongia aerizusa. Bioorg Med Chem. 2010;18:4947-56.
[56] Pham C-D, Hartmann R, Boehler P, Stork B, Wesselborg S, Lin W, Lai D, Proksch P. Callyspongiolide, a cytotoxic macrolide from the marine sponge callyspongia sp. Org Lett. 2014;16:266-9.
[57] Ha J, Park SB. Callyspongiolide kills cells by inducing mitochondrial dysfunction via cellular iron depletion. Commun Biol. 2021;4:1-14.
[58] AlTarabeen M, Daletos G, Ebrahim W, Muller WEG, Hartmann R, Lin W, Proksch P. Ircinal e, a new manzamine derivative from the indonesian marine sponge acanthostrongylophora ingens. Nat Prod Commun. 2015;10:1951-3.
[59] Mudianta IW, Skinner-Adams T, Andrews KT, Davis RA, Hadi TA, Hayes PY, Garson MJ. Psammaplysin derivatives from the balinese marine sponge aplysinella strongylata. J Nat Prod. 2012;75:2132-43.
[60] Fattorusso C, Persico M, Calcinai B, Cerrano C, Parapini S, Taramelli D, Novellino E, Romano A, Scala F, Fattorusso E, Taglialatela-Scafati O. Manadoperoxides a-d from the indonesian sponge plakortis cfr. Simplex. Further insights on the structure-activity relationships of simple 1,2-dioxane antimalarials. J Nat Prod. 2010;73:1138-45.
[61] Chianese G, Scala F, Calcinai B, Cerrano C, Dien HA, Kaiser M, Tasdemir D, Taglialatela-Scafati O. Natural and semisynthetic analogues of manadoperoxide b reveal new structural requirements for trypanocidal activity. Mar Drugs. 2013;11:3297-308.
[62] Hanif N, Tanaka J, Setiawan A, Trianto A, de Voogd NJ, Murni A, Tanaka C, Higa T. Polybrominated diphenyl ethers from the indonesian sponge lamellodysidea herbacea. J Nat Prod. 2007;70:432-5.
[63] Rao KV, Kasanah N, Wahyuono S, Tekwani BL, Schinazi RF, Hamann MT. Three new manzamine alkaloids from a common indonesian sponge and their activity against infectious and tropical parasitic diseases. J Nat Prod. 2004;67:1314-8.
[64] Jaffar Ali HA Tamilselvi M, An introduction to ascidians, in Ascidians in coastal water: A comprehensive inventory of ascidian fauna from the indian coast, HA Jaffar Ali and M Tamilselvi, Editors. 2016. Springer International Publishing: Cham. p. 3-11.
[65] Palanisamy SK, Rajendran NM, Marino A. Natural products diversity of marine ascidians (tunicates; ascidiacea) and successful drugs in clinical development. Nat Prod Bioprospecting. 2017;7:1-111.
[66] Fernandez R, Martin MJ, Rodriguez-Acebes R, Reyes F, Francesch A, Cuevas C. Diazonamides c-e, new cytotoxic metabolites from the ascidian diazona sp. Tetrahedron Lett. 2008;49:2283-5.
[67] Nakazawa T, Xu J, Nishikawa T, Oda T, Fujita A, Ukai K, Mangindaan REP, Rotinsulu H, Kobayashi H, Namikoshi M. Lissoclibadines 4-7, polysulfur aromatic alkaloids from the indonesian ascidian lissoclinum cf. Badium J Nat Prod. 2007;70:439-42.
[68] Wang W, Takahashi O, Oda T, Nakazawa T, Ukai K, Mangindaan REP, Rotinsulu H, Wewengkang DS, Kobayashi H, Tsukamoto S, Namikoshi M. Lissoclibadins 8-14, polysulfur dopamine-derived alkaloids from the colonial ascidian lissoclinum cf. Badium Tetrahedron. 2009;65:9598-603.
[69] Oda T, Lee J-S, Sato Y, Kabe Y, Sakamoto S, Handa H, Mangindaan REP, Namikoshi M. Inhibitory effect of n, n-didesmethylgrossularine-1 on inflammatory cytokine production in lipopolysaccharide-stimulated raw 264.7 cells. Mar Drugs. 2009;7:589-99.
[70] Rodriguez J, Nieto RM, Jimenez C. New briarane stecholide diterpenes from the indonesian gorgonian briareum sp. J Nat Prod. 1998;61:313-7.
[71] Gonzalez N, Barral MA, Rodriguez J, Jimenez C. New cytotoxic steroids from the gorgonian isis hippuris. Structure-activity studies. Tetrahedron. 2001;57:3487-97.
[72] Shen L, Pelletier J. Selective targeting of the dead-box rna helicase eukaryotic initiation factor (eif) 4a by natural products. Nat Prod Rep. 2020;37:609-16.
[73] Akrim D. The seaweed business development in indonesia. J Ship Ocean Eng. 2014;4.
[74] Atmadja WS Prud'homme van Reine WF. Checklist of the seaweed species biodiversity of indonesia: With their distribution and classification: Green algae (chlorophyta) and brown algae (phaeophyceae, ochrophyta). 2014: Indonesian Institute of Sciences (LIPI).
[75] Setyawidati N, Kaimuddin A, Wati I, Helmi M, Widowati I, Rossi N, Liabot P, Stiger-Pouvreau V. Percentage cover, biomass, distribution, and potential habitat mapping of natural macroalgae, based on high-resolution satellite data and in situ monitoring, at libukang island, malasoro bay, indonesia. J Appl Phycol. 2018;30:159-71.
[76] FAO F. The state of world fisheries and aquaculture. Opportunities and challenges. Food and Agriculture Organization of the United Nations. 2012.
[77] Dmytryk A, Chojnacka K, Rój E, et al. The methods of algal biomass extraction: Toward the application. In: Chojnacka K, et al., editors. Algae biomass: Characteristics and applications: Towards algae-based products. Cham: Springer International Publishing; 2018. p. 49-56.
[78] Qin Y, 6 - applications of bioactive seaweed substances in functional food products, in Bioactive seaweeds for food applications, Y Qin, Editor. 2018. Academic Press. p. 111-134.
[79] Agatonovic-Kustrin S, Morton DW. Cosmeceuticals derived from bioactive substances found in marine algae. Oceanography. 2013;1:1-11.
[80] Bedoux G, Hardouin K, Burlot AS, Bourgougnon N. Bioactive components from seaweeds: cosmetic applications and future development. In: Bourgougnon N, editor. Advances in botanical research. Academic Press: Academic Press; 2014. p. 345-78.
[81] Le Lann K, Surget G, Couteau C, Coiffard L, Cérantola S, Gaillard F, Larnicol M, Zubia M, Guérard F, Poupart N, Stiger-Pouvreau V. Sunscreen, antioxidant, and bactericide capacities of phlorotannins from the brown macroalga halidrys siliquosa. J Appl Phycol. 2016;28:3547-59.
[82] Pangestuti R Kim S-K, An overview of phycocolloids: The principal commercial seaweed extracts, in Marine algae extracts. 2015. p. 319-330.
[83] Scania A, Chasani A. The anti-bacterial effect of phenolic compounds from three species of marine macroalgae. Biodiversitas. J Biol Divers. 2021;22:3412-7.
[84] Sunarpi H, Prasedya E, Ariyana M, Nikmatullah A, Zulkifli L, Yoshie S, Miyake M, Kobayashi D, Hazama A. Cytotoxicity and antiproliferative activity of indonesian red algae acanthophora muscoides crude ethanol extracts. J Biol Sci. 2018;18:425-33.
[85] Surget G, Roberto VP, Le Lann K, Mira S, Guérard F, Laizé V, Poupart N, Cancela ML, Stiger-Pouvreau V. Marine green macroalgae: a source of natural compounds with mineralogenic and antioxidant activities. J Appl Phycol. 2017;29:575-84.
[86] Ahmad A. Isolation and characterization of bioactive protein from green algae halimeda macrobola acting as antioxidant and anticancer agent. Am J Biomed Life Sci. 2014;2:134.
[87] Pattipeilohy F, Moniharapon T, Mailoa MN, Bonan R, Sormin D. Antibacterial activity of seaweed (gymnogongrus sp) extract against salmonella typhimurium, escherichia coli and bacillus subtilis. Int J Sci Res Publ. 2017;7:433.
[88] Joice PM, Kolanus EJ. Inhibitory test antimicrobial of seaweed extract from padina sp. Against the growth of vibrio parahaemolyticus, staphylococcus aureus, escherichia coli and salmonella thypimirium. Proc Int Semin Basic Sci. 2017;1:35-44.
[89] Kasanah N, Amelia W, Mukminin A, Triyanto, Isnansetyo A. Antibacterial activity of indonesian red algae gracilaria edulis against bacterial fish pathogens and characterization of active fractions. Nat Prod Res. 2019;33:3303-7.
[90] Giri C, Pengra B, Zhu Z, Singh A, Tieszen LL. Monitoring mangrove forest dynamics of the sundarbans in Bangladesh and India using multi-temporal satellite data from 1973 to 2000. Estuar Coast Shelf Sci. 2007;73:91-100.
[91] Giri C, Zhu Z, Tieszen LL, Singh A, Gillette S, Kelmelis JA. Mangrove forest distributions and dynamics (1975-2005) of the tsunami-affected region of Asia?. J Biogeogr. 2008;35:519-28.
[92] Veettil BK, Ward RD, Quang NX, Trang NTT, Giang TH. Mangroves of vietnam: historical development, current state of research and future threats. Estuar Coast Shelf Sci. 2019;218:212-36.
[93] Ilman M, Wibisono ITC, Suryadiputra INNJWI-IP, Bogor. State of the art information on mangrove ecosystems in indonesia. Wetlands International. 2011;19:1-57.
[94] Spalding M, Kainuma M, Collins L, World atlas of mangroves a collaborative project of itto. 2010. ISME/FAO/UNEP-WCMC London UK Earthscan.
[95] Giri C, Ochieng E, Tieszen LL, Zhu Z, Singh A, Loveland T, Masek J, Duke N. Status and distribution of mangrove forests of the world using earth observation satellite data. Glob Ecol Biogeogr. 2011;20:154-9.
[96] Debbab A, Aly AH, Proksch P. Mangrove derived fungal endophytes - a chemical and biological perception. Fungal Divers. 2013;61:1-27.
[97] Ancheeva E, Daletos G, Proksch P. Lead compounds from mangrove-associated microorganisms. Mar Drugs. 2018;16:1-31.
[98] Deng Q, Li G, Sun M, Yang X, Xu J. A new antimicrobial sesquiterpene isolated from endophytic fungus cytospora sp. From the chinese mangrove plant ceriops tagal. Nat Prod Res. 2020;34:1404-8.
[99] Sumardi S, Masfria M, Basyuni M, Septama AW. Potential of polyisoprenoid of mangroves as antimicrobial and anticancer: a bibliometric analysis. Sci Technol Indonesia. 2022;7:22-8.
[100] Glasenapp Y, Korth I, Nguyen XV, Papenbrock J. Sustainable use of mangroves as sources of valuable medicinal compounds: species identification, propagation and secondary metabolite composition. S Afr J Bot. 2019;121:317-28.
[101] Firdaus M, Prihanto A, Nurdiani R. Antioxidant and cytotoxic activity of acanthus ilicifolius flower. Asian Pac J Trop Biomed. 2013;3:17-21.
[102] Suyatno NH, Kirana D, Rofida R, Putri F. Non-phenolic compounds from the stem bark of red mangrove (rhizophora stylosa) and evaluation of their cytotoxicity and larvacidal activity. J Biol Agric Healthc. 2014;4:65-8.
[103] Sibero MT, Siswanto AP, Pribadi R, Sabdono A, Radjasa OK, Trianto A, Frederick EH, Wijaya AP, Haryanti D, Triningsih DW. The effect of drying treatment to metabolite profile and cytotoxic potential of rhizophora apiculata leaves. Biodiversitas. 2020;21:2180-7.
[104] Darmadi J, Batubara RR, Himawan S, Azizah NN, Audah HK, Arsianti A, Kurniawaty E, Ismail IS, Batubara I, Audah KA. Evaluation of indonesian mangrove xylocarpus granatum leaves ethyl acetate extract as potential anticancer drug. Nature. 2021;11:1-18.
[105] Arbiastutie Y, Diba F, Masriani M. Short communication: ethnobotanical and ecological studies of medicinal plants in a mangrove forest in mempawah district, west kalimantan, Indonesia. Biodiversitas J Biol Divers. 2021;22:3164-70.
[106] Nurjanah N, Jacoeb A, Hidayat T, Hazar S, Nugraha R. Antioxidant activity, total phenol content, and bioactive components of lindur leave (bruguierra gymnorrhiza). Am J Food Sci Health. 2016;2:65-70.
[107] Budi SB, Sulistiyati TD, Hardoko H. Phytochemicals and identification of antioxidant compounds from ethanol extract of sonneratia alba leaves and bark. Russian J Agric Socio Econ Sci. 2019;95:190-6.
[108] Latief M, Utami A, Amanda H, Muhaimin M, Afifah Z. Antioxidant activity of isolated compound from perepat roots (Sonneratia alba). J Phys: Conf Ser. 2019;1282:1-7.
[109] Purwaningsih S, Salamah E, Sukarno AYP, Deskawati E. Aktivitas antioksidan dari buah mangrove (rhizophora mucronata lamk) pada suhu yang berbeda. J Pengolahan Hasil Perikanan Indonesia. 2013;16:199-206.
[110] Rumengan AP, Mandiangan ES, Tanod WA, Paransa DSJ, Paruntu CP, Mantiri DMH. Identification of pigment profiles and antioxidant activity of rhizophora mucronata mangrove leaves origin lembeh, north Sulawesi, Indonesia. Biodiversitas J Biol Divers. 2021;22:2805-16.
[111] Anam K, Susilo D, Kusrini D, Aminin A. Chemical constituents and inhibition xanthine oxidase activity of avicennia marina exudate. Res J Med Plants. 2016;11:19-24.
[112] Manurung J, Kappen J, Schnitzler J, Frolov A, Wessjohann LA, Agusta A, Muellner-Riehl AN. Franke K Analysis of unusual sulfated constituents and anti-infective properties of two indonesian mangroves, lumnitzera littorea and lumnitzera racemosa (combretaceae). Separations. 2021;8:1-21. https://doi.org/10.3390/separations8060082.
[113] Tamalene MN, Uday UK, Bhakat RK, Vianti E, Bahtiar B, Suparman S. Utilization of mangrove plants as a source of malaria medicine in north maluku province, indonesia. Asian J Ethnobiol. 2021;4:86-92.
[114] Lutfiah R, Juliasih NLGR, Hendri J, Setiawan A. Screening extract etoac sponge derived fungi against clinical staphylococcus aureus to obtain sustainable natural product. in IOP Conference Series: Earth and Environmental Science. 2021. IOP Publishing Ltd.
[115] Sibero MT, Pribadi R, Larasati SJH, Calabon MS, Sabdono A, Subagiyo S, Frederick EH. Diversity of sponge-associated fungi from a mangrove forest in kemujan island, karimunjawa national park, indonesia. Biodiversitas. 2021;22:5695-5605.
[116] Sumilat DA, Lintang RAJ. Antibacterial potential of marine fungus aspergillus nomius isolated from green algae bornetella sp. Jurnal Ilmiah PLATAX. 2021;9:49-49.
[117] Tarman K, Lindequist U, Wende K, Porzel A, Arnold N, Wessjohann LA. Isolation of a new natural product and cytotoxic and antimicrobial activities of extracts from fungi of indonesian marine habitats. Mar Drugs. 2011;9:294-306.
[118] Trianto A, Radjasa OK, Subagiyo, Purnaweni H, Bahry MS, Djamaludin R, Tjoa A, Singleton I, Diele K, Evan D. Potential of fungi isolated from a mangrove ecosystem in northern Sulawesi, Indonesia: Protease, cellulase and anti-microbial capabilities. Biodiversitas. 2021;22:1717-24.
[119] Fadillah WN, Sukarno N, Iswantini D, Rahminiwati M, Listiyowati S. New record of gymnoascus udagawae associated with clathria sp. Sponge from indonesia and the potency as anti-candida. in IOP Conference Series: Earth and Environmental Science. 2021. IOP Publishing Ltd.
[120] Nursid M, Dewi Fajarningsih N, Marraskuranto E, et al. Kadar emestrin emericella nidulans yang dikultivasi pada media dan waktu yang berbeda. JPB Perikanan. 2012;7:77-86.
[121] Pramana AAC, Ramadhani E, Priyambada F, Pertiwi GA, Setiawibawa RAA, Wijayanti N. Sponge-associated fungi isolates from ancorina sp. Showed anti-cancer activity against hela cell lines. J Microbiol Biotechnol Food Sci. 2022;12:1-4.
[122] Setyowati EP, Purwantiningsih, Erawan FMY, Rahmanti S, Hanum NMR, Devi NCM. Cytotoxic and antimicrobial activities of ethyl acetate extract from fungus trichoderma reesei strain jcm 2267, aspergillus flavus strain mc-10-l, penicillium sp, and aspergillus fumigatus associated with marine sponge stylissa flabelliformis. Res J Pharm Technol. 2021;14:5126-32.
[123] Fadillah WN, Sukarno N, Iswantini D, Rahminiwati M, Hanif N, Waite M. In vitro pancreatic lipase inhibition by marine fungi Purpureocillium lilacinum associated with stylissa sp. Sponge as anti-obesity agent. HAYATI J Biosci. 2022;29:76-86.
[124] Andhikawati A, Oktavia Y, Ibrahim B, Kustiariyah Tarman d, Teknologi Hasil Perairan D, Bioteknologi Kelautan D, Kajian Sumberdaya Pesisir dan Lautan P, Isolasi dan penapisan kapang laut endofit penghasil selulase, in Jurnal Ilmu dan Teknologi Kelautan Tropis. 2014. p. 219-227.
[125] Ayuningtyas EP, Sibero MT, Hutapea NEB, Frederick EH, Murwani R, Zilda DS, Wijayanti DP, Sabdono A, Pringgenies D, Radjasa OK. Screening of extracellular enzyme from phaeophyceae-associated fungi. in IOP Conference Series: Earth and Environmental Science. 2021.
[126] Julia ZAR, Sukarno N, Ardie SW, Batubara I, Tjitrosoedirdjo S, Waite M. Endophytic fungi isolated from the mangrove species rhizophora apiculata and their efficacy as herbicides. HAYATI J Biosci. 2022;29:605-20.
[127] Wahjuningrum D, Efianda TR, Tarman K, Yuhana M, Effendi I, Saputra F. Supplementation of nodulisporium sp. Kt29 induced by vibrio harveyi as an immunostimulant for controlling vibriosis in vannamei white shrimp under marine culture system. Jurnal Akuakultur Indonesia. 2020;19:95-105.
[128] Kohlmeyer J, Kohlmeyer E. Marine mycology: the higher fungi. New York: Academic Press; 1979.
[129] Debbab A, Aly AH, Lin WH, Proksch P. Bioactive compounds from marine bacteria and fungi: minireview. Microb Biotechnol. 2010;3:544-63.
[130] Taylor MW, Radax R, Steger D, Wagner M. Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol Mol Biol Rev. 2007;71:295-347.
[131] Venkataraman V, Vaithi K, Singaram J. Bioactive novel natural products from marine sponge: Associated fungi. Associated Fungi. Fungal Reproduction and Growth.
[132] Bahry MS, Radjasa OK, Trianto A. Potential of marine sponge-derived fungi in the aquaculture system. Biodiversitas. 2021;22:2883-92.
[133] Trifani R, Noverita, Hadi TA, Sinaga E. Antibacterial activity of endosymbiotic fungi isolated from marine sponges collected from kotok kecil island, seribu islands, jakarta. in IOP Conference Series: Earth and Environmental Science. 2021. IOP Publishing Ltd.
[134] Hutapea NEB, Sibero MT, Ayuningtyas EP, Frederick EH, Wijayanti DP, Sabdono A, Pringgenies D, Radjasa OK, Zilda DS, Murwani R. Seaweed-associated fungi from sepanjang beach, gunungkidul, yogyakarta as potential source of marine polysaccharides-degrading enzymes. in IOP Conference Series: Earth and Environmental Science. 2021. IOP Publishing Ltd.
[135] Nurhalimah S, Rahmawati SI, Hermanianto J, Nurjanah S, Izzati FN, Septiana E, Rachman F, Bustanussalam B, Hapsari Y, Simanjuntak P, Putra MY. Aktivitas antioksidan dari metabolit sekunder kapang endofit mangrove aegiceras corniculatum. Biopropal Industri. 2021;12:51-51.
[136] Jimenez C. Marine natural products in medicinal chemistry. ACS Med Chem Lett. 2018;9:959-61.
[137] Ameen F, AlNadhari S, Al-Homaidan AA. Marine microorganisms as an untapped source of bioactive compounds. Saudi J Biol Sci. 2021;28:224-31.
[138] Barzkar N, Tamadoni Jahromi S, Poorsaheli HB, Vianello F. Metabolites from marine microorganisms, micro, and macroalgae: Immense scope for pharmacology. Mar Drugs. 2019;17:1-29.
[139] Andryukov B, Mikhailov V, Besednova N. The biotechnological potential of secondary metabolites from marine bacteria. J Mar Sci Eng. 2016;7:1-16.
[140] Biswas K, Paul D, Sinha SN. Marine bacteria: a potential tool for antibacterial activity. J Appl Environ Microbiol. 2016;4:25-9.
[141] Tortorella E, Tedesco P, Palma Esposito F, January GG, Fani R, Jaspars M, de Pascale D. Antibiotics from deep-sea microorganisms: current discoveries and perspectives. Mar Drugs. 2018;16:1-16.
[142] Lozano C, Kielbasa M, Gaillard JC, Miotello G, Pible O, Armengaud J. Identification and characterization of marine microorganisms by tandem mass spectrometry proteotyping. Microorganisms. 2022;10:1-10.
[143] Handayani DP, Isnansetyo A, Istiqomah I, Jumina J. Anti-vibrio activity of Pseudoalteromonas xiamenensis stkmti.2, a new potential vibriosis biocontrol bacterium in marine aquaculture. Aquacult Res. 2022;53:1800-13.
[144] Handayani D, Sandrawaty N, Murniati M, Regina R. Screening of endophytic bacteria isolated from marine sponge haliclona fascigera for inhibition against clinical isolates of methicillin resistant staphylococcus aureus (mrsa). J Appl Pharm Sci. 2015;5:139-42.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed