REVIEW |
|
|
|
|
|
Alkaloids as potential antivirals. A comprehensive review |
Shah Faisal1, Syed Lal Badshah1, Bibi Kubra1, Abdul2, Hamid Emwas3 |
1 Department of Chemistry, Islamia College University Peshawar, Peshawar 25120, Pakistan; 3 Division of Biological and Environmental Sciences and Engineering(BESE), Smart-Health Initiative(SHI) and Red Sea Research Center(RSRC), King Abdullah University of Science and Technology(KAUST), Thuwal 23955-6900, Saudi Arabia |
|
|
Abstract Alkaloids are a diverse group of natural phytochemicals. These phytochemicals in plants provide them protection against pests, and herbivorous organisms and also control their development. Numerous of these alkaloids have a variety of biological effects, and some have even been developed into medications with different medicinal properties. This review aims to provide a broad overview of the numerous naturally occurring alkaloids (isolated from both terrestrial and aquatic species) along with synthetically produced alkaloid compounds having prominent antiviral properties. Previous reviews on this subject have focused on the biological actions of both natural and synthetic alkaloids, but they have not gone into comprehensive detail about their antiviral properties. We reviewed here several antiviral alkaloids that have been described in the literature in different investigational environments i.e. (in-vivo, in-ovo, in-vitro, and in-silico), and found that these alkaloid compounds have significant antiviral properties against several infectious viruses. These alkaloids repressed and targeted various important stages of viral infection at nontoxic doses while some of the alkaloids reported here also exhibited comparable inhibitory activities to commercially used drugs. Overall, these anti-viral effects of alkaloids point to a high degree of specificity, implying that they could serve as effective and safe antiviral medicines if further pursued in medicinal and pharmacological investigations.
|
Keywords
Alkaloid antivirals
Antiviral agents
Antiviral phytochemicals
In vitro
Spread
Inhibition
|
Corresponding Authors:
Syed Lal Badshah,E-mail:shahbiochemist@gmail.com;Mariusz Jaremko,E-mail:mariusz.jaremko@kaust.edu.sa
E-mail: shahbiochemist@gmail.com;mariusz.jaremko@kaust.edu.sa
|
Issue Date: 08 March 2023
|
|
|
1. Rosales PF, Bordin GS, Gower AE, Moura S. Indole alkaloids:2012 until now, highlighting the new chemical structures and biological activities.Fitoterapia. 2020;143:104558. https://doi.org/10.1016/j.fitote.2020.104558. 2. Kurek J. Introductory Chapter:Alkaloids-their importance in nature and for human life. In:Alkaloids-their importance in nature and human life. London:InTech; 2019. 3. Dey P, Kundu A, Kumar A, Gupta M, Lee BM, Bhakta T, Dash S, Kim HS. Analysis of alkaloids (indole alkaloids, isoquinoline alkaloids, tropane alkaloids). In:Recent advances in natural products analysis. Amsterdam:Elsevier;2020.p. 505-67. 4. Yang L, Stockigt J. Trends for diverse production strategies of plant medicinal alkaloids. Nat Prod Rep. 2010;27:1469-79. 5. Howell G, Butler J, DeShazo RD, Farley JM, Liu HL, Nanayakkara NPD, Yates A, Yi GB, Rockhold RW. Cardiodepressant and neurologic actions of Solenopsis invicta (imported fire ant) venom alkaloids. Ann Allergy Asthma Immunol. 2005;94:380-6. https://doi.org/10.1016/S1081-?1206(10)60991-X. 6. Tao H, Zuo L, Xu H, Li C, Qiao G, Guo M, Lin X. Alkaloids as anticancer agents:a review of Chinese patents in recent 5 years. Recent Pat Anticancer Drug Discov. 2020;15:2-13. https://doi.org/10.2174/1574892815666200131120618. 7. Ajebli M, Khan H, Eddouks M. Natural alkaloids and diabetes mellitus:a review. Endocr Metab Immune Disord Drug Targets. 2020;21:111-30. https://doi.org/10.2174/1871530320666200821124817. 8. Ti H, Zhuang Z, Yu Q, Wang S. Progress of plant medicine derived extracts and alkaloids on modulating viral infections and inflammation. Drug Des Dev Ther. 2021;15:1385-408. https://doi.org/10.2147/DDDT.S299120. 9. Patel A, Vanecha R, Patel J, Patel D, Shah U, Bambharoliya T. Development of natural bioactive alkaloids:anticancer perspective. Mini-Rev Med Chem. 2021;22:200-12. https://doi.org/10.2174/1389557521666210712111331. 10. Qing Z-X, Yang P, Tang Q, Cheng P, Liu X-B, Zheng Y, Liu Y-S, Zeng J-G. Isoquinoline alkaloids and their antiviral, antibacterial, and antifungal activities and structure-activity relationship. Curr Org Chem.2017. https://doi.org/10.2174/1385272821666170207114214. 11. Zhang M-Z, Chen Q, Yang G-F. A review on recent developments of indole-containing antiviral agents. Eur J Med Chem. 2015;89:421-41. https://doi.org/10.1016/j.ejmech.2014.10.065. 12. Moradi M-T, Karimi A, Lorigooini Z. Alkaloids as the natural anti-influenza virus agents:a systematic review. Toxin Rev. 2018;37:11-8. https://doi.org/10.1080/15569543.2017.1323338. 13. Naithani R, Huma L, Holland L, Shukla D, McCormick D, Mehta R, Moriarty R. Antiviral activity of phytochemicals:a comprehensive review. Mini-Rev Med Chem. 2008;8:1106-33. https://doi.org/10.2174/138955708785909943. 14. Badshah SL, Ullah A, Syed S. The role of zinc-finger antiviral proteins in immunity against viruses. Mol Genet Microbiol Virol. 2020;35:78-84. https://doi.org/10.3103/S0891416820020020. 15. Fikatas A, Vervaeke P, Meyen E, Llor N, Ordeix S, Boonen I, Bletsa M, Kafetzopoulou LE, Lemey P, Amat M, et al. A novel series of indole alkaloid derivatives inhibit dengue and zika virus infection by interference with the viral replication complex. Antimicrob Agents Chemother.2021.https://doi.org/10.1128/AAC.02349-?20. 16. Kaur P, Thiruchelvan M, Lee RCH, Chen H, Chen KC, Ng ML, Chu JJH. Inhibition of Chikungunya virus replication by harringtonine, a novel antiviral that suppresses viral protein expression. Antimicrob Agents Chemother. 2013;57:155-67. https://doi.org/10.1128/AAC.01467-?12. 17. Feng Y, Le X, Wu S. Pathogenesis and pathological changes of avian influenza in human. In:Avian influenza in human. Singapore:Springer Singapore;2021.p. 29-40. 18. Cecil CE, Davis JM, Cech NB, Laster SM. Inhibition of H1N1 influenza A virus growth and induction of inflammatory mediators by the isoquinoline alkaloid berberine and extracts of goldenseal (Hydrastis canadensis). Int Immunopharmacol. 2011;11:1706-14. https://doi.org/10.1016/j.intimp.2011.06.002. 19. Wu Y, Li JQ, Kim YJ, Wu J, Wang Q, Hao Y. In vivo and in vitro antiviral effects of berberine on influenza virus. Chin J Integr Med. 2011;17:444-52. https://doi.org/10.1007/s11655-?011-?0640-3. 20. Zhang GB, Zhang B, Zhang XX, Bing FH. Homonojirimycin, an alkaloid from dayflower inhibits the growth of influenza A virus in vitro. Acta Virol. 2013;57:85-6. 21. Zhang GB, Tian LQ, Li YM, Liao YF, Li J, Bing FH. Protective effect of homonojirimycin from Commelina communis (dayflower) on influenza virus infection in mice. Phytomedicine. 2013;20:964-8. https://doi.org/10.1016/j.phymed.2013.04.009. 22. Peng J, Lin T, Wang W, Xin Z, Zhu T, Gu Q, Li D. Antiviral alkaloids produced by the mangrove-derived fungus Cladosporium sp. PJX-41. J Nat Prod. 2013;76:1133-40. https://doi.org/10.1021/np400200k. 23. Chernyshov VV, Yarovaya OI, Fadeev DS, Gatilov YV, Esaulkova YL, Muryleva AS, Sinegubova KO, Zarubaev VV, Salakhutdinov NF. Singlestage synthesis of heterocyclic alkaloid-like compounds from (+)-camphoric acid and their antiviral activity. Mol Divers. 2020;24:61-7. https://doi.org/10.1007/s11030-?019-?09932-9. 24. Madavaraju K, Koganti R, Volety I, Yadavalli T, Shukla D. Herpes simplex virus cell entry mechanisms:an update. Front Cell Infect Microbiol.2021. https://doi.org/10.3389/fcimb.2020.617578. 25. Ozcelik B, Kartal M, Orhan I. Cytotoxicity, antiviral and antimicrobial activities of alkaloids, flavonoids, and phenolic acids. Pharm Biol. 2011;49:396-402. https://doi.org/10.3109/13880209.2010.519390. 26. Palem JR, Bedadala GR, El Sayed KA, Hsia SCV. Manzamine A as a novel inhibitor of herpes simplex virus type-1 replication in cultured corneal cells. Planta Med. 2011;77:46-51. https://doi.org/10.1055/s-?0030-?1250093. 27. Hu S, Dutt J, Zhao T, Foster CS. Tetrandrine potently inhibits herpes simplex virus type-1-induced keratitis in BALB/c mice. Ocul Immunol Inflamm. 1997;5:173-80. https://doi.org/10.3109/09273949709116892. 28. Bridges CG, Ahmed SP, Kang MS, Nash RJ, Porter EA, Tyms AS. The effect of oral treatment with 6-O-butanoyl castanospermine (MDL 28,574) in the murine zosteriform model of HSV-1 infection. Glycobiology. 1995;5:249-53. https://doi.org/10.1093/glycob/5.2.249. 29. Amorim IS, Lach G, Gkogkas CG. The role of the eukaryotic translation initiation factor 4E (EIF4E) in neuropsychiatric disorders. Front Genet.2018. https://doi.org/10.3389/fgene.2018.00561. 30. Dong HJ, Wang ZH, Meng W, Li CC, Hu YX, Zhou L, Wang XJ. The natural compound homoharringtonine presents broad antiviral activity in vitro and in vivo. Viruses. 2018. https://doi.org/10.3390/v10110601. 31. Tepaske MR, Gloer JB, Wicklow DT, Dowd PF. Tubingensin A:an antiviral carbazole alkaloid from the sclerotia of Aspergillus tubingensis. J Org Chem. 1989;54:4743-6. https://doi.org/10.1021/jo00281a010. 32. Chin LW, Cheng YW, Lin SS, Lai YY, Lin LY, Chou MY, Chou MC, Yang CC. Anti-herpes simplex virus effects of berberine from Coptidis Rhizoma, a major component of a Chinese herbal medicine, Ching-Wei-San. Arch Virol. 2010;155:1933-41. https://doi.org/10.1007/s00705-?010-?0779-9. 33. Wu ZN, Chen NH, Tang Q, Chen S, Zhan ZC, Zhang YB, Wang GC, Li YL, Ye WC. β-Carboline alkaloids from the seeds of Peganum harmala and their Anti-HSV-2 virus activities. Org Lett. 2020;22:7310-4. https://doi.org/10.1021/acs.orglett.0c026 50. 34. Dwivedi VD, Tripathi IP, Tripathi RC, Bharadwaj S, Mishra SK. Genomics, proteomics and evolution of dengue virus. Brief Funct Genom. 2017;16:217-27. https://doi.org/10.1093/bfgp/elw040. 35. Hsiung GD, Chang PW. Parainfluenza viral infection. In:Handbook of zoonoses, second edition, section B:viral zoonoses. Bosa Roca:CRC Press;2017. p. 409-21. ISBN 978-1-35-144180-3. 36. Ramos-Castaneda J, Barreto dos Santos F, Martínez-Vega R, Galvao de Araujo JM, Joint G, Sarti E. Dengue in Latin America:systematic review of molecular epidemiological trends. PLoS Negl Trop Dis.2017. https://doi.org/10.1371/journal.pntd.0005224. 37. Ka S, Merindol N, Sow AA, Singh A, Landelouci K, Plourde MB, Pépin G, Masi M, Di Lecce R, Evidente A, et al. Amaryllidaceae alkaloid cherylline inhibits the replication of dengue and zika viruses. Antimicrob Agents Chemother.2021.https://doi.org/10.1128/AAC.00398-?21. 38. Quintana VM, Selisko B, Brunetti JE, Eydoux C, Guillemot JC, Canard B, Damonte EB, Julander JG, Castilla V. Antiviral activity of the natural alkaloid anisomycin against dengue and zika viruses. Antiviral Res. 2020;176:104749. https://doi.org/10.1016/j.antiviral.2020.104749. 39. Whitby K, Pierson TC, Geiss B, Lane K, Engle M, Zhou Y, Doms RW, Diamond MS. Castanospermine, a potent inhibitor of dengue virus infection in vitro and in vivo. J Virol. 2005;79:8698-706. https://doi.org/10.1128/jvi.79.14.8698-?8706.2005. 40. Diosa-Toro M, Troost B, van de Pol D, Heberle AM, Urcuqui-Inchima S, Thedieck K, Smit JM. Tomatidine, a novel antiviral compound towards dengue virus. Antivir Res. 2019;161:90-9. https://doi.org/10.1016/j.antiviral.2018.11.011. 41. Monsalve-Escudero LM, Loaiza-Cano V, Zapata-Cardona MI, Quintero- Gil DC, Hernandez-Mira E, Pajaro-Gonzalez Y, Oliveros-Díaz AF, Diaz-Castillo F, Quinones W, Robledo S, et al. The antiviral and virucidal activities of voacangine and structural analogs extracted from Tabernaemontana cymosa depend on the dengue virus strain. Plants.2021.https://doi.org/10.3390/plants10071280. 42. Li Z, Wang J, Cheng X, Hu H, Guo C, Huang J, Chen Z, Lu J. The worldwide seroprevalence of DENV, CHIKV and ZIKV infection:a systematic review and meta-analysis. PLoS Negl Trop Dis. 2021;15:e0009337. https://doi.org/10.1371/journal.pntd.00093 37. 43. Varghese FS, Kaukinen P, Glasker S, Bespalov M, Hanski L, Wennerberg K, Kümmerer BM, Ahola T. Discovery of berberine, abamectin and ivermectin as antivirals against chikungunya and other alphaviruses. Antivir Res. 2016;126:117-24. https://doi.org/10.1016/j.antiviral.2015.12.012. 44. Troost B, Mulder LM, Diosa-Toro M, van de Pol D, Rodenhuis-Zybert IA, Smit JM. Tomatidine, a natural steroidal alkaloid shows antiviral activity towards chikungunya virus in vitro. Sci Rep.2020.https://doi.org/10.1038/s41598-?020-?63397-7. 45. Farman A, Lal Badshah S, Khan K, Ahmad N, Naeem A. Ebola, the negative stranded RNA virus. In:Some RNA viruses. London:IntechOpen; 2021. 46. Ahmad N, Farman A, Badshah SL, ur Rahman A, Ur Rashid H, Khan K. Molecular modeling, simulation and docking study of Ebola virus glycoprotein. J Mol Graph Model. 2017;72:266-71. https://doi.org/10.1016/j.jmgm.2016.12.010. 47. Yang S, Xu M, Lee EM, Gorshkov K, Shiryaev SA, He S, Sun W, Cheng Y-S, Hu X, Tharappel AM, et al. Emetine inhibits zika and Ebola virus infections through two molecular mechanisms:inhibiting viral replication and decreasing viral entry. Cell Discov. 2018;4:31. https://doi.org/10.1038/s41421-?018-?0034-1. 48. Nag A, Chowdhury RR. Piperine, an alkaloid of black pepper seeds can effectively inhibit the antiviral enzymes of dengue and Ebola viruses, an in silico molecular docking study. VirusDisease. 2020;31:308-15. https://doi.org/10.1007/s13337-?020-?00619-6. 49. Mukhopadhyay R, Roy S, Venkatadri R, Su YP, Ye W, Barnaeva E, Mathews Griner L, Southall N, Hu X, Wang AQ, et al. Efficacy and mechanism of action of low dose emetine against human cytomegalovirus. PLoS Pathog. 2016. https://doi.org/10.1371/journal.ppat.1005717. 50. Hayashi K, Minoda K, Nagaoka Y, Hayashi T, Uesato S. Antiviral activity of berberine and related compounds against human cytomegalovirus. Bioorg Med Chem Lett. 2007;17:1562-4. https://doi.org/10.1016/j.bmcl.2006.12.085. 51. Teixeira SR, Elias J, Coutinho CM, Zotin MCZ, Yamamoto AY, De Moura Negrini SFB, Mussi-Pinhata MM. Cranial us in infants exposed to zika virus:the Natzig cohort. Radiology. 2021;300:690-8. https://doi.org/10.1148/radiol.2021204150. 52. Badshah SL, Mabkhot YN, Ahmad N, Syed S, Naeem A. Zika virus, microcephaly and its possible global spread. In:Current topics in zika. London:InTech; 2018. 53. Noreen, Ali R, Badshah SL, Faheem M, Abbasi SW, Ullah R, Bari A, Jamal SB, Mahmood HM, Haider A, et al. Identification of potential inhibitors of zika virus NS5 RNA-dependent RNA polymerase through virtual screening and molecular dynamic simulations. Saudi Pharm J. 2020;28:1580-91. https://doi.org/10.1016/j.jsps. 2020.10.005. 54. Ahmad N, Badshah SL, Junaid M, Ur Rehman A, Muhammad A, Khan K. Structural insights into the zika virus NS1 protein inhibition using a computational approach. J Biomol Struct Dyn. 2021;39:3004-11. https://doi.org/10.1080/07391102.2020.1759453. 55. Badshah SL, Naeem A, Mabkhot Y. New high resolution crystal structure of NS2B-NS3 protease of zika virus. Viruses. 2017;9:7. https://doi.org/10.3390/v9010007. 56. Ahmad N, Rehman AU, Badshah SL, Ullah A, Mohammad A, Khan K. Molecular dynamics simulation of zika virus NS5 RNA dependent RNA polymerase with selected novel non-nucleoside inhibitors. J Mol Struct.2020. https://doi.org/10.1016/j.molstruc.2019.127428. 57. Badshah SL, Ahmad N, Rehman AU, Khan K, Ullah A, Alsayari A, Muhsinah AB, Mabkhot YN. Molecular docking and simulation of zika virus NS3 helicase. BMC Chem. 2019;13:67. https://doi.org/10.1186/s13065-?019-?0582-y. 58. Guo YW, Liu XJ, Yuan J, Li HJ, Mahmud T, Hong MJ, Yu JC, Lan WJ. l-Tryptophan induces a marine-derived Fusarium sp. to produce indole alkaloids with activity against the zika virus. J Nat Prod. 2020;83:3372-80. https://doi.org/10.1021/acs.jnatprod.0c00717. 59. Ho YJ, Lu JW, Huang YL, Lai ZZ. Palmatine inhibits zika virus infection by disrupting virus binding, entry, and stability. Biochem Biophys Res Commun. 2019;518:732-8. https://doi.org/10.1016/j.bbrc. 2019. 08. 120. 60. Faisal S, Badshah SL, Kubra B, Sharaf M, Emwas AH, Jaremko, M, Abdalla M. Identification and Inhibition of the Druggable Allosteric Site of SARS-CoV-2 NSP10/NSP16 Methyltransferase through Computational Approaches. Moleculesm 2022;27. https://doi.org/10.3390/molecules27165241. 61. Kubra B, Badshah SL, Faisal S, Sharaf M, Emwas AH, Jaremko M, Abdalla M. Inhibition of the Predicted Allosteric Site of the SARS-CoV-2 Main Protease through Flavonoids. J Biomol Struct Dyn. 2022;0:1-18. https://doi.org/10.1080/07391102.2022.2140201. 62. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, Qiu Y, Wang J, Liu Y, Wei Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China:a descriptive study. Lancet. 2020;395:507-13. https://doi.org/10.1016/S0140-?6736(20)30211-7. 63. Badshah SL, Ullah A, Badshah SH, Ahmad I. Spread of novel coronavirus by returning pilgrims from Iran to Pakistan. J Travel Med.2020.https://doi.org/10.1093/jtm/taaa044. 64. Badshah SL, Ullah A. Spread of coronavirus disease-19 among devotees during religious congregations. Ann Thorac Med. 2020;15:105-6. https://doi.org/10.4103/atm.ATM_162_20. 65. Faisal S, Lal Badshah S, Kubra B, Sharaf M, Emwas AH, Jaremko M, Abdalla M. Computational study of SARS-Cov-2 RNA dependent RNA polymerase allosteric site inhibition. Molecules. 2022;27:223. 66. Kumar S, Kashyap P, Chowdhury S, Kumar S, Panwar A, Kumar A. Identification of phytochemicals as potential therapeutic agents that binds to Nsp15 protein target of coronavirus (SARS-CoV-2) that are capable of inhibiting virus replication. Phytomedicine. 2021;85:153317. https://doi.org/10.1016/j.phymed.2020.153317. 67. Gendrot M, Andreani J, Boxberger M, Jardot P, Fonta I, Le Bideau M, Duflot I, Mosnier J, Rolland C, Bogreau H, et al. Antimalarial drugs inhibit the replication of SARS-CoV-2:an in vitro evaluation. Travel Med Infect Dis. 2020;37:101873. https://doi.org/10.1016/j.tmaid.2020.101873. 68. Mamkulathil Devasia R, Altaf M, Fahad Alrefaei A, Manoharadas S. Enhanced production of camptothecin by immobilized callus of Ophiorrhiza mungos and a bioinformatic insight into its potential antiviral effect against SARS-CoV-2. J King Saud Univ Sci. 2021;33:101344. https://doi.org/10.1016/j.jksus.2021.101344. 69. Faisal S, Badshah SL, Kubra B, Sharaf M, Emwas AH, Jaremko M, Abdalla M. Identification and inhibition of the druggable allosteric site of SARS-CoV-2 NSP10/NSP16 methyltransferase through computational approaches. Molecules. 2022. https://doi.org/10.3390/molecules27165241. 70. Alfaro M, Alfaro I, Angel C. Identification of potential inhibitors of SARSCoV- 2 papain-like protease from tropane alkaloids from Schizanthus porrigens:a molecular docking study. Chem Phys Lett. 2020;761:138068. https://doi.org/10.1016/j.cplett.2020.138068. 71. Garg S, Roy A. In silico analysis of selected alkaloids against main protease (Mpro) of SARS-CoV-2. Chem Biol Interact.2020.https://doi.org/10.1016/j.cbi.2020.109309. 72. Choy K-T, Wong AY-L, Kaewpreedee P, Sia SF, Chen D, Hui KPY, Chu DKW, Chan MCW, Cheung PP-H, Huang X, et al. Remdesivir, lopinavir, emetine, and homoharringtonine inhibit SARS-CoV-2 replication in vitro. Antiviral Res. 2020;178:104786. https://doi.org/10.1016/j.antiviral.2020.104786. 73. Chen SL, Morgan TR. The natural history of hepatitis C virus (HCV) infection. Int J Med Sci. 2006;3:47-52. 74. Shahid F, Noreen, Ali R, Badshah SL, Jamal SB, Ullah R, Bari A, Mahmood HM, Sohaib M, Ansari SA. Identification of potential HCV inhibitors based on the interaction of epigallocatechin-3-gallate with viral envelope proteins. Molecules.2021.https://doi.org/10.3390/molecules26051257. 75. Yang G, Chen D. Alkaloids from the roots of Zanthoxylum nitidum and their antiviral and antifungal effects. Chem Biodivers. 2008;5:1718-22.https://doi.org/10.1002/cbdv.200890160. 76. Zhang YB, Zhang XL, Chen NH, Wu ZN, Ye WC, Li YL, Wang GC. Four matrine-based alkaloids with antiviral activities against HBV from the seeds of Sophora alopecuroides. Org Lett. 2017;19:424-7. https://doi.org/10.1021/acs.orglett.6b03685. 77. Zhang YB, Yang L, Luo D, Chen NH, Wu ZN, Ye WC, Li YL, Wang GC. Sophalines E-I, five quinolizidine-based alkaloids with antiviral activities against the hepatitis B virus from the seeds of Sophora alopecuroides. Org Lett. 2018;20:5942-6. https://doi.org/10.1021/acs.orglett.8b02637. 78. Zhang YB, Luo D, Yang L, Cheng W, He LJ, Kuang GK, Li MM, Li YL, Wang GC. Matrine-type alkaloids from the roots of Sophora flavescens and their antiviral activities against the hepatitis B virus. J Nat Prod. 2018;81:2259-65. https://doi.org/10.1021/acs.jnatprod.8b00576. 79. Hung TC, Jassey A, Liu CH, Lin CJ, Lin CC, Wong SH, Wang JY, Yen MH, Lin LT. Berberine inhibits hepatitis C virus entry by targeting the viral E2 glycoprotein. Phytomedicine. 2019;53:62-9. https://doi.org/10.1016/j.phymed.2018.09.025. 80. Khoury ZH, Meeks V. The influence of antiretroviral therapy on HIVrelated oral manifestations. J Natl Med Assoc. 2021;113:449-56. 81. Cutignano A, Bifulco G, Bruno I, Casapullo A, Gomez-Paloma L, Riccio R. Dragmacidin F:a new antiviral bromoindole alkaloid from the mediterranean sponge Halicortex sp. Tetrahedron. 2000;56:3743-8. https://doi.org/10.1016/S0040-?4020(00)00281-7. 82. Wan Z, Lu Y, Liao Q, Wu Y, Chen X. Fangchinoline inhibits human immunodeficiency virus type 1 replication by interfering with Gp160 proteolytic processing. PLoS ONE. 2012;7:e39225. https://doi.org/10.1371/journal.pone.0039225. 83. Hagiwara K, Murakami T, Xue G, Shimizu Y, Takeda E, Hashimoto Y, Honda K, Kondoh Y, Osada H, Tsunetsugu-Yokota Y, et al. Identification of a novel Vpr-binding compound that inhibits HIV-1 multiplication in macrophages by chemical array. Biochem Biophys Res Commun. 2010;403:40-5. https://doi.org/10.1016/j.bbrc.2010.10.107. 84. Sunkara PS, Kang MS, Bowlin TL, Liu PS, Tyms AS, Sjoerdsma A. Inhibition of glycoprotein processing and HIV replication by castanospermine analogues. Ann N Y Acad Sci. 1990;616:90-6. https://doi.org/10.1111/j.1749-?6632.1990.tb17831.x. 85. Ruprecht RM, Mullaney S, Andersen J, Bronson R. In vivo analysis of castanospermine, a candidate antiretroviral agent. J Acquir Immune Defic Syndr. 1989;2:149-57. 86. Peng J, Hu JF, Kazi AB, Li Z, Avery M, Peraud O, Hill RT, Franzblau SG, Zhang F, Schinazi RF, et al. Manadomanzamines A and B:a novel alkaloid ring system with potent activity against mycobacteria and HIV-1. J Am Chem Soc. 2003;125:13382-6. https://doi.org/10.1021/ja030087z. 87. Valadao ALC, Abreu CM, Dias JZ, Arantes P, Verli H, Tanuri A, De Aguiar RS. Natural plant alkaloid (emetine) inhibits HIV-1 replication by interfering with reverse transcriptase activity. Molecules. 2015;20:11474-89. https://doi.org/10.3390/molecules200611474. 88. Yousaf M, Hammond NL, Peng J, Wahyuono S, McIntosh KA, Charman WN, Mayer AMS, Hamann MT. New manzamine alkaloids from an Indo- Pacific sponge. Pharmacokinetics, oral availability, and the significant activity of several manzamines against HIV-I, AIDS opportunistic infections, and inflammatory diseases. J Med Chem. 2004;47:3512-7. https://doi.org/10.1021/jm030475b. 89. Rao KV, Santarsiero BD, Mesecar AD, Schinazi RF, Tekwani BL, Hamann MT. New manzamine alkaloids with activity against infectious and tropical parasitic diseases from an Indonesian sponge. J Nat Prod. 2003;66:823-8. https://doi.org/10.1021/np020592u. 90. Liu HB, Lauro G, O'Connor RD, Lohith K, Kelly M, Colin P, Bifulco G, Bewley CA. Tulongicin, an antibacterial tri-indole alkaloid from a deep-water Topsentia sp. sponge. J Nat Prod. 2017;80:2556-60. https://doi.org/10.1021/acs.jnatprod.7b004 52. 91. Hallock YF, Manfredi KP, Dai JR, Cardellina JH, Gulakowski RJ, McMahon JB, Schaffer M, Stahl M, Gulden KP, Bringmann G, et al. Michellamines D-F, new HIV-inhibitory dimeric naphthylisoquinoline alkaloids, and korupensamine E, a new antimalarial monomer, from Ancistrocladus korupensis. J Nat Prod. 1997;60:677-83. https://doi.org/10.1021/np9700679. 92. Duan H, Takaishi Y, Imakura Y, Jia Y, Li D, Cosentino LM, Lee KH. Sesquiterpene alkaloids from Tripterygium hypoglaucum and Tripterygium wilfordii:a new class of potent anti-HIV agents. J Nat Prod. 2000;63:357-61. https://doi.org/10.1021/np990281s. 93. Al-Sharif E, Strianese D, AlMadhi NH, D'Aponte A, dell'Omo R, Di Benedetto R, Costagliola C. Ocular tropism of coronavirus (CoVs):a comparison of the interaction between the animal-to-human transmitted coronaviruses (SARS-CoV-1, SARS-CoV-2, MERS-CoV, CoV-229E, NL63, OC43, HKU1) and the eye. Int Ophthalmol. 2021;41:349-62. 94. Kim D, Min J, Jang M, Lee J, Shin Y, Park C, Song J, Kim H, Kim S, Jin Y-H, et al. Natural bis-benzylisoquinoline alkaloids-tetrandrine, fangchinoline, and cepharanthine, inhibit human coronavirus OC43 infection of MRC-5 human lung cells. Biomolecules. 2019;9:696. https://doi.org/10.3390/biom9110696. 95. Dyall J, Coleman CM, Hart BJ, Venkataraman T, Holbrook MR, Kindrachuk J, Johnson RF, Olinger GG, Jahrling PB, Laidlaw M, et al. Repurposing of clinically developed drugs for treatment of middle east respiratory syndrome coronavirus infection. Antimicrob Agents Chemother. 2014;58:4885-93. https://doi.org/10.1128/AAC.03036-?14. 96. Shang Z, Tan S, Ma D. Respiratory syncytial virus:from pathogenesis to potential therapeutic strategies. Int J Biol Sci. 2021;17:4073-91. https://doi.org/10.7150/ijbs.64762. 97. Risso-Ballester J, Galloux M, Cao J, Le Goffic R, Hontonnou F, Jobart- Malfait A, Desquesnes A, Sake SM, Haid S, Du M, et al. A condensatehardening drug blocks RSV replication in vivo. Nature. 2021;595:596-9. https://doi.org/10.1038/s41586-?021-?03703-z. 98. Wang L, Yun H, Zhang W, Zheng X. Aza-oxo-indoles for the treatment and prophylaxis of respiratory syncytial virus infection; 2018. 99. Phan MVT, Arron G, GeurtsvanKessel CH, Huisman RC, Molenkamp R, Koopmans MPG, Cotten M. Complete genome characterization of eight human parainfluenza viruses from the Netherlands. Microbiol Resour Announc. 2019. https://doi.org/10.1128/mra.00125-?19. 100. Hanafi-Bojd AA, Motazakker M, Vatandoost H, Dabiri F, Chavshin AR. Sindbis virus infection of mosquito species in the wetlands of Northwestern Iran and modeling the probable ecological niches of SINV vectors in the Country. Acta Trop. 2021;220:105952. https://doi.org/10.1016/j.actat ropica.2021.105952. 101. Schlesinger S, Koyama AH, Malfer C, Gee SL, Schlesinger MJ. The effects of inhibitors of glucosidase I on the formation of Sindbis virus. Virus Res. 1985;2:139-49. https://doi.org/10.1016/0168-?1702(85) 90244-8. 102. Feng X, Zhu N, Cui Y, Hou L, Zhou J, Qiu Y, Yang X, Liu C, Wang D, Guo J, et al. Characterization and pathogenicity of a naturally reassortant and recombinant infectious bursal disease virus in China. Transbound Emerg Dis. 2022;69:e746-58. https://doi.org/10.1111/tbed.14347. 103. Wen F, Yang J, Li A, Gong Z, Yang L, Cheng Q, Wang C, Zhao M, Yuan S, Chen Y, et al. Genetic characterization and phylogenetic analysis of porcine epidemic diarrhea virus in Guangdong, China, between 2018 and 2019. PLoS ONE.2021.https://doi.org/10.1371/journal.pone.0253622. 104. Wang H, Kong N, Jiao Y, Dong S, Sun D, Chen X, Zheng H, Tong W, Yu H, Yu L, et al. EGR1 suppresses porcine epidemic diarrhea virus replication by regulating IRAV to degrade viral nucleocapsid protein. J Virol.2021.https://doi.org/10.1128/jvi.00645-?21. 105. Kang KB, Ming G, Kim GJ, Ha TKQ, Choi H, Oh WK, Sung SH. Jubanines F-J, cyclopeptide alkaloids from the roots of Ziziphus jujuba. Phytochemistry. 2015;119:90-5. https://doi.org/10.1016/j.phytochem.2015.09.001. 106. Anyanwu AA, Jimam NS, Omale S, Wannang NN. Antiviral activities of Cucumis metuliferus fruits alkaloids on infectious bursal disease virus (IBDV). J Phytopharm. 2017;6:98-101. https://doi.org/10.31254/phyto.2017.6206. 107. Spetter MJ, Louge Uriarte EL, Verna AE, Leunda MR, Pereyra SB, Odeón AC, Gonzalez Altamiranda EA. Genomic diversity and phylodynamic of bovine viral diarrhea virus in Argentina. Infect Genet Evol. 2021;96:105089. https://doi.org/10.1016/j.meegid.2021.105089. 108. Arnaiz I, Cervino M, Martínez S, Fouz R, Diéguez FJ. Bovine viral diarrhea virus (BVDV) infection:effect on reproductive performance and milk yield in dairy herds. Vet J.2021.https://doi.org/10.1016/j.tvjl.2021.105747. 109. Whitby K, Taylor D, Patel D, Ahmed P, Tyms AS. Action of celgosivir (6 O-butanoyl castanospermine) against the pestivirus BVDV:implications for the treatment of hepatitis C. Antivir Chem Chemother.2004;15:141-51. https://doi.org/10.1177/095632020401500304. 110. Ouzounov S, Mehta A, Dwek RA, Block TM, Jordan R. The combination of interferon α-2b and n-butyl deoxynojirimycin has a greater than additive antiviral effect upon production of infectious bovine viral diarrhea virus (BVDV) in vitro:implications for hepatitis C virus (HCV) therapy. Antivir Res. 2002;55:425-35. https://doi.org/10.1016/S0166-?3542(02)00075-X. 111. Wu L, Woudstra L, Dam TA, Germans T, van Rossum AC, Niessen HWM, Krijnen PAJ. electrocardiographic changes are strongly correlated with the extent of cardiac inflammation in mice with coxsackievirus b3-induced viral myocarditis. Cardiovasc Pathol. 2021;54:107367. https://doi.org/10.1016/j.carpath.2021.107367. 112. Kraft L, Sauter M, Seebohm G, Klingel K. In vitro model systems of coxsackievirus B3-induced myocarditis:comparison of commonly used cell lines and characterization of CVB3-infected ICell® cardiomyocytes. Viruses. 1835;2021:13. https://doi.org/10.3390/v13091835. 113. Pan QM, Li YH, Hua J, Huang FP, Wang HS, Liang D. Antiviral matrinetype alkaloids from the rhizomes of Sophora tonkinensis. J Nat Prod. 2015;78:1683-8. https://doi.org/10.1021/acs.jnatprod.5b00325. 114. Swallow DL. Antiviral agents. Prog Drug Res. 1978;22:267-326. https://doi.org/10.1007/978-3-?0348-?7102-0_6. 115. Becker Y. Antiviral agents from natural sources. Pharmacol Ther. 1980;10:119-59. 116. Perez RM. Antiviral activity of compounds isolated from plants. Pharm Biol. 2003;41:107-57. 117. Coffin JM, Stoye JP, Frankel WN. Genetics of endogenous murine leukemia viruses. Ann N Y Acad Sci. 1989;567:39-49. https://doi.org/10.1111/j.1749-?6632.1989.tb16457.x. 118. Sunkara PS, Bowlin TL, Liu PS, Sjoerdsma A. Antiretroviral activity of castanospermine and deoxynojirimycin, specific inhibitors of glycoprotein processing. Biochem Biophys Res Commun. 1987;148:206-10. https://doi.org/10.1016/0006-?291X(87)91096-5. 119. Quiroz E, Moreno N, Peralta PH, Tesh RB. A human case of encephalitis associated with vesicular stomatitis virus (Indiana serotype) infection. Am J Trop Med Hyg. 1988;39:312-4. https://doi.org/10.4269/ajtmh.1988.39.312. 120. Holman DH, Wang D, Woraratanadharm J, Dong JY. Viral vectors. In:Vaccines for biodefense and emerging and neglected diseases. Amsterdam:Elsevier; 2009. p. 77-91. ISBN 978-0-12-369408-9. 121. Brown IH, Cargill PW, Woodland RM, Berg T. Newcastle disease virus. In:Veterinary vaccines. Hoboken:Wiley;2021.p. 335-53. 122. Ganar K, Das M, Sinha S, Kumar S. Newcastle disease virus:current status and our understanding. Virus Res. 2014;184:71-81. 123. Winter S, Lechapt E, Gricourt G, N'debi M, Boddaert N, Moshous D, Blauwblomme T, Kossorotoff M, Fouyssac F, Chareyre J, et al. Fatal encephalitis caused by Newcastle disease virus in a child. Acta Neuropathol. 2021;142:605-8. https://doi.org/10.1007/s00401-?021-?02344-w. 124. Khandelwal N, Chander Y, Rawat KD, Riyesh T, Nishanth C, Sharma S, Jindal N, Tripathi BN, Barua S, Kumar N. Emetine inhibits replication of RNA and DNA viruses without generating drug-resistant virus variants. Antivir Res. 2017;144:196-204. https://doi.org/10.1016/j.antiviral.2017.06.006. 125. Thompson KM. Modeling and managing poliovirus risks:we are where we are…. Risk Anal. 2021;41:223-8. https://doi.org/10.1111/risa.13668. 126. Guo M, Zheng R, Wu HL, Chen D, Su J, Xu T, Wu H, Xiang W, Li Y, Zhu B. Inhibition of enterovirus 71 infection by polysaccharides extracted from Picochlorum sp. 122 via the AKT and ATM/ATR signaling pathways. Arch Virol. 2021;166:3269-74. https://doi.org/10.1007/s00705-?021-?05229-1. 127. Lalani S, Poh CL. Flavonoids as antiviral agents for enterovirus A71 (EVA71). Viruses. 2020;12:184. https://doi.org/10.3390/v12020184. 128. Ieven M, Vlietinck AJ, Vanden Berghe DA, Totte J, Dommisse R, Esmans E, Alderweireldt F. Plant antiviral agents. III. Isolation of alkaloids from Clivia miniata Regel (Amaryllidaceae). J Nat Prod. 1982;45:564-73. https://doi.org/10.1021/np50023a009. 129. Boustie J, Stigliani JL, Montanha J, Amoros M, Payard M, Girret L. Antipoliovirus structure-activity relationships of some aporphine alkaloids. J Nat Prod. 1998;61:480-4. https://doi.org/10.1021/np970 382v. 130. Farnsworth NR, Svoboda GH, Blomster RN. Antiviral activity of selected Catharanthus alkaloids. J Pharm Sci. 1968;57:2174-5. https://doi.org/10.1002/jps.2600571235. 131. Liu J, Yang Y, Xu Y, Ma C, Qin C, Zhang L. Lycorine reduces mortality of human enterovirus 71-infected mice by inhibiting virus replication. Virol J. 2011;8:483. https://doi.org/10.1186/1743-?422X-8-?483. 132. Assaid N, Arich S, Ezzikouri S, Benjelloun S, Dia M, Faye O, Akarid K, Beck C, Lecollinet S, Failloux A-B, et al. Serological evidence of West Nile virus infection in human populations and domestic birds in the Northwest of Morocco. Comp Immunol Microbiol Infect Dis. 2021;76:101646. https://doi.org/10.1016/j.cimid.2021.101646. 133. Wobessi JNS, Kenmoe S, Mahamat G, Belobo JTE, Emoh CPD, Efietngab AN, Bebey SRK, Ngongang DT, Tchatchouang S, Nzukui ND, et al. Incidence and seroprevalence of rabies virus in humans, dogs and other animal species in Africa, a systematic review and meta-analysis. One Health. 2021;13:100285. 134. Yin J, Wang X, Mao R, Zhang Z, Gao X, Luo Y, Sun Y, Yin X. Research advances on the interactions between rabies virus structural proteins and host target cells:accrued knowledge from the application of reverse genetics systems. Viruses. 2021;13:2288. https://doi.org/10.3390/v13112288. |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|