Natural Products and Bioprospecting    2022, Vol. 12 Issue (6) : 36-36     DOI: 10.1007/s13659-022-00358-9
ORIGINAL ARTICLES |
Development and structure-activity relationships of tanshinones as selective 11β-hydroxysteroid dehydrogenase 1 inhibitors
Xu Deng1,2, Su-Ling Huang3, Jian Ren1, Zheng-Hong Pan1,4, Yu Shen3, Hao-Feng Zhou1, Zhi-Li Zuo1, Ying Leng3, Qin-Shi Zhao1
1 State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China;
2 Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China;
3 State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China;
4 Guangxi Key Laboratory of Functional Phytochemicals Research and Utilization, Guangxi Institute of Botany, Chinese Academy of Sciences, Guilin 541006, China
Download: PDF(1665 KB)   HTML ()  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  11β-Hydroxysteroid dehydrogenase 1 (11β-HSD1) represents a promising drug target for metabolic syndrome, including obesity and type 2 diabetes. Our initial screen of a collection of natural products from Danshen led to the identification of tanshinones as the potent and selective 11β-HSD1 inhibitors. To improve the druggability and explore the structure-activity relationships (SARs), more than 40 derivatives have been designed and synthesized using tanshinone IIA and cryptotanshinone as the starting materials. More than 10 derivatives exhibited potent in vitro 11β-HSD1 inhibitory activity and good selectivity over 11β-HSD2 across human and mouse species. Based on the biological results, SARs were further discussed, which was also partially rationalized by a molecular docking model of 1 bound to the 11β-HSD1. Remarkably, compounds 1, 17 and 30 signifcantly inhibited 11β-HSD1 in 3T3-L1 adipocyte and in livers of ob/ob mice, which merits further investigations as anti-diabetic agents. This study not only provides a series of novel selective 11β-HSD1 inhibitors with promising therapeutic potentials in metabolic syndromes, but also expands the boundaries of the chemical and biological spaces of tanshinones.
Keywords Metabolic syndrome, Tanshinones, Selective 11β-HSD1 inhibitors, Structure-activity relationships     
Fund:We also thanked the National Natural Science Foundation of China (No. U1502223), Hunan Provincial Key Research and Development Project (Grant No. 2021WK2005 to X. Deng), Natural Science Foundation of Hunan Province (Grant No. 2021JJ30894 to X. Deng) and the open fund of State Key Laboratory of Phytochemistry and Plant Resource in West China (Grant No. P2020-KF03).
Corresponding Authors: Zhi-Li Zuo, E-mail: zuozhili@mail.kib.ac.cn;Ying Leng, E-mail: yleng@simm.ac.cn;Qin-Shi Zhao, E-mail: qinshizhao@mail.kib.ac.cn     E-mail: zuozhili@mail.kib.ac.cn; yleng@simm.ac.cn; qinshizhao@mail.kib.ac.cn
Issue Date: 23 December 2022
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xu Deng
Su-Ling Huang
Jian Ren
Zheng-Hong Pan
Yu Shen
Hao-Feng Zhou
Zhi-Li Zuo
Ying Leng
Qin-Shi Zhao
Trendmd:   
Cite this article:   
Xu Deng,Su-Ling Huang,Jian Ren, et al. Development and structure-activity relationships of tanshinones as selective 11β-hydroxysteroid dehydrogenase 1 inhibitors[J]. Natural Products and Bioprospecting, 2022, 12(6): 36-36.
URL:  
http://npb.kib.ac.cn/EN/10.1007/s13659-022-00358-9     OR     http://npb.kib.ac.cn/EN/Y2022/V12/I6/36
1. Day C. Metabolic syndrome, or what you will: defnitions and epidemiology. Diab Vasc Dis Res. 2007;4:32-8.
2. Tomlinson JW, Stewart PM. Mechanisms of disease: selective inhibition of 11β-hydroxysteroid dehydrogenase type 1 as a novel treatment for the metabolic syndrome. Nat Clin Pract Endocrinol Metab. 2005;1:92-9.
3. Wamil M, Seckl JR. Inhibition of 11B-hydroxysteroid dehydrogenase type 1 as a promising therapeutic target. Drug Discov Today. 2007;12:504-20.
4. Odermatt A. 11β-hydroxysteroid dehydrogenase type 1: a potential therapeutic target for the control of local glucocorticoid concentrations. Curr Enzyme Inhib. 2005;1:107-22.
5. Vantyghem MC, Marcelli-Tourvieille S, Defrance F, Wemeau JL. 11betahydroxysteroide dehydrogenases. Recent Adv Ann Endocrinol. 2007;68:349-56.
6. Masuzaki H, Paterson J, Shinyama H, Morton NM, Mullins JJ, Seckl JR, Flier JS. A transgenic model of visceral obesity and the metabolic syndrome. Science. 2001;294:2166-70.
7. Masuzaki H, Yamamoto H, Kenyon CJ, Elmquist JK, Morton NM, Paterson JM, Shinyama H, Sharp MGF, Fleming S, Mullins JJ, Seckl JR, Flier JS. Transgenic amplifcation of glucocorticoid action in adipose tissue causes high blood pressure in mice. J Clin Invest. 2003;112:83-90.
8. Rask E, Walker BR, Söderberg S, Livingstone DEW, Eliasson M, Johnson O, Andrew R, Olsson T. Tissue-specifc changes in peripheral cortisol metabolism in obese women: increased adipose 11β-hydroxysteroid dehydrogenase type 1 activity. J Clin Endocrinol Metab. 2002;87:3330-6.
9. Kannisto K, Pietiläinen KH, Ehrenborg E, Rissanen A, Kaprio J, Hamsten A, Yki-Järvinen H. Overexpression of 11β-hydroxysteroid dehydrogenase-1 in adipose tissue is associated with acquired obesity and features of insulin resistance: studies in young adult monozygotic twins. J Clin Endocrinol Metab. 2004;89:4414-21.
10. Densmore VS, Morton NM, Mullins JJ, Seckl JR. 11β-hydroxysteroid dehydrogenase type 1 induction in the arcuate nucleus by high-fat feeding: a novel constraint to hyperphagia? Endocrinology. 2006;147:4486-95.
11. Kotelevtsev Y, Holmes MC, Burchell A, Houston PM, Schmoll D, Jamieson P, Best R, Brown R, Edwards CRW, Seckl JR, Mullins JJ. 11β-Hydroxysteroid dehydrogenase type 1 knockout mice show attenuated glucocorticoidinducible responses and resist hyperglycemia on obesity or stress. Proc Natl Acad Sci. 1997;94:14924-9.
12. Eijnde BO, Van LM, Brouns F, Van DVGJ, Labarque V, Ramaekers M, Van SR, Verbessem P, Wijnen H, Hespel P. No efects of oral ribose supplementation on repeated maximal exercise and de novo ATP resynthesis. J Appl Physiol. 1985;91(2001):2275-81.
13. Nair S, Lee YH, Lindsay RS, Walker BR, Tataranni PA, Bogardus C, Baier LJ, Permana PA. 11β-Hydroxysteroid dehydrogenase Type 1: genetic polymorphisms are associated with Type 2 diabetes in Pima Indians independently of obesity and expression in adipocyte and muscle. Diabetologia. 2004;47:1088-95.
14. Kotelevtsev Y, Brown RW, Fleming S, Kenyon C, Edwards CRW, Seckl JR, Mullins JJ. Hypertension in mice lacking 11β-hydroxysteroid dehydrogenase type 2. J Clin Invest. 1999;103:683-9.
15. Wilson RC, Dave-Sharma S, Wei J-Q, Obeyesekere VR, Li K, Ferrari P, Krozowski ZS, Shackleton CHL, Bradlow L, Wiens T, New MI. A genetic defect resulting in mild low-renin hypertension. Proc Natl Acad Sci. 1998;95:10200-5.
16. Walker BR, Connacher AA, Lindsay RM, Webb DJ, Edwards CRW. Carbenoxolone increases hepatic insulin sensitivity in man: a novel role for 11-oxosteroid reductase in enhancing glucocorticoid receptor activation. J Clin Endocrinol Metab. 1995;80:3155-9.
17. Boyle CD, Kowalski TJ, Zhang L. 11beta -hydroxysteroid dehydrogenase type 1 inhibitors. Ann Rep Med Chem. 2006;41:127-40.
18. Scott JS, Goldberg FW, Turnbull AV. Medicinal chemistry of inhibitors of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1). J Med Chem. 2014;11:4466-86.
19. Hale C, Wang M. Development of 11 beta-HSD1 inhibitors for the treatment of type 2 diabetes. Mini-Rev Med Chem. 2008;8:702-10.
20. Anderson A, Walker BR. 11β-HSD1 inhibitors for the treatment of type 2 diabetes and cardiovascular disease. Drugs. 2013;73:1385-93.
21. Newman DJ, Cragg GM. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod. 2012;75:311-35.
22. Gong L, Haiyu X, Wang L, Xiaojie Y, Huijun Y, Songsong W, Cheng L, Ma X, Gao S, Liang R, Yang H. Identifcation and evaluation of the chemical similarity of Yindan xinnaotong samples by ultra high performance liquid chromatography with quadrupole time-of-fight mass spectrometry fngerprinting. J Sep Sci. 2016;39:611-22.
23. Gao S, Liu Z, Li H, Little PJ, Liu P, Xu S. Cardiovascular actions and therapeutic potential of tanshinone IIA. Atherosclerosis. 2012;220:3-10.
24. Tian X-H, Wu JH. Tanshinone derivatives: a patent review (January 2006- September 2012). Exp Opin Therap Pat. 2013;23:19-29.
25. Xu S, Liu P. Tanshinone II-A: new perspectives for old remedies. Exp Opin Therap Pat. 2013;23:149-53.
26. Jung SH, Seol HJ, Jeon SJ, Son KH, Lee JR. Insulin-sensitizing activities of tanshinones, diterpene compounds of the root of Salvia miltiorrhiza Bunge. Phytomedicine. 2009;16:327-35.
27. Xie Z, Loi TT, Zhang P, Xu F, Xu X, Li P. Dan-Qi prescription ameliorates insulin resistance through overall corrective regulation of glucose and fat metabolism. J Ethnopharmacol. 2015;172:70-9.
28. Li X. Efect of tanshinone II A combined with atorvastatin calcium on plasma lipid peroxidation and IL-6 levels in type 2 diabetes patients with macroangiopathy. Wuhan Daxue Xuebao, Yixueban. 2011;32:800-2.
29. Chen Y, Li C, Cai F. Efect of sodium tanshinone IIA sulfonate(A) on SIRT1 and Fox01 in kidney of diabetic rats. Zhongyao Yaoli Yu Linchuang. 2015;31:47-50.
30. Liu J, Ren J, Yang K, Chen S, Yang X, Zhao Q-S. Discovery and biological evaluation of tanshinone derivatives as potent dual inhibitors of indoleamine 2, 3-dioxygenase 1 and tryptophan 2, 3-dioxygenase. Eur J Med Chem. 2022;235: 114294.
31. Park SB, Park JS, Jung WH, Park A, Jo SR, Kim HY, Rhee SD, Ryu SY, Jeong HG, Park S, Lee H, Kim KY. Identifcation of a novel 11β-HSD1 inhibitor from a high-throughput screen of natural product extracts. Pharmacol Res. 2015;102:245-53.
32. Deng X, Shen Y, Yang J, He J, Zhao Y, Peng L-Y, Leng Y, Zhao Q-S. Discovery and structure-activity relationships of ent-Kaurene diterpenoids as potent and selective 11β-HSD1 inhibitors: potential impact in diabetes. Eur J Med Chem. 2013;65:403-14.
33. Chen X-Q, Shao L-D, Pal M, Shen Y, Cheng X, Xu G, Peng L-Y, Wang K, Pan Z-H, Li M-M, Leng Y, He J, Zhao Q-S. Hupehenols A-E, selective 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) inhibitors from Viburnum hupehense. J Nat Prod. 2015;78:330-4.
34. Hu Y, Stumpfe D, Bajorath J. Recent advances in scafold hopping. J Med Chem. 2017;60:1238-46.
35. Bian J, Deng B, Xu L, Xu X, Wang N, Hu T, Yao Z, Du J, Yang L, Lei Y, Li X, Sun H, Zhang X, You Q. 2-Substituted 3-methylnaphtho[1,2-b]furan-4,5-diones as novel L-shaped ortho-quinone substrates for NAD(P)H:quinone oxidoreductase (NQO1). Eur J Med Chem. 2014;82:56-67.
36. Bian J, Li X, Wang N, Wu X, You Q, Zhang X. Discovery of quinone-directed antitumor agents selectively bioactivated by NQO1 over CPR with improved safety profle. Eur J Med Chem. 2017;129:27-40.
37. Ghosh K, Karmakar R, Mal D. Total synthesis of neo-tanshinlactones through a cascade benzannulation-lactonization as the key step. Eur J Org Chem. 2013;2013:4037-46.
38. Rousseau J-F, Dodd RH. Synthesis of 3-deaza-β-hydroxyhistidine derivatives and their use for the preparation of substituted pyrrolo[2,3-c]pyridine-5-carboxylates via the Pictet-Spengler reaction. J Org Chem. 1998;63:2731-7.
39. Marrero JG, Andrés LS, Luis JG. Quinone derivatives by chemical transformations of 16-hydroxycarnosol from Salvia species. Chem Pharm Bull. 2005;53:1524-9.
40. Minetto G, Raveglia LF, Taddei M. Microwave-assisted Paal-Knorr reaction. A rapid approach to substituted pyrroles and furans. Org Lett. 2004;6:389-92.
41. An L-K, Bu X-Z, Wu H-Q, Guo X-D, Ma L, Gu L-Q. Reaction of tanshinones with biogenic amine metabolites in vitro. Tetrahedron. 2002;58:10315-21.
42. Lin W, Yuan L, Tan W, Feng J, Long L. Construction of fuorescent probes via protection/deprotection of functional groups: a ratiometric fuorescent probe for Cu2+. Chem Eur J. 2009;15:1030-5.
43. Miyaura N, Suzuki A. Palladium-catalyzed cross-coupling reactions of organoboron compounds. Chem Rev. 1995;95:2457-83.
44. Gong W, Liu Y, Zhang J, Jiao Y, Xue J, Li Y. Regioand stereoselective [4+3] cycloaddition towards fused 5,7,6-tricyclic skeletons. Chem Asian J. 2013;8:546-51.
45. Butini S, Campiani G, Borriello M, Gemma S, Panico A, Persico M, Catalanotti B, Ros S, Brindisi M, Agnusdei M, Fiorini I, Nacci V, Novellino E, Belinskaya T, Saxena A, Fattorusso C. Exploiting protein fuctuations at the active-site gorge of human cholinesterases: further optimization of the design strategy to develop extremely potent inhibitors. J Med Chem. 2008;51:3154-70.
46. Mundt S, Solly K, Thieringer R, Hermanowski-Vosatka A. Development and application of a scintillation proximity assay (SPA) for identifcation of selective inhibitors of 11β-hydroxysteroid dehydrogenase type 1. Assay Drug Dev Technol. 2005;3:367-75.
47. Solly K, Mundt SS, Zokian HJ, Ding GJ-F, Hermanowski-Vosatka A, Strulovici B, Zheng W. High-throughput screening of 11β-hydroxysteroid dehydrogenase type 1 in scintillation proximity assay format. Assay Drug Dev Technol. 2005;3:377-84.
48. Mundt S, Solly K, Thieringer R, Hermanowski-Vosatka A. Development and application of a scintillation proximity assay (SPA) for identifcation of selective inhibitors of 11 beta-hydroxysteroid dehydrogenase type 1. Assay Drug Dev Techn. 2005;3:367-75.
49. Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shelley M, Perry JK, Shaw DE, Francis P, Shenkin PS. Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem. 2004;47:1739-49.
50. Halgren TA, Murphy RB, Friesner RA, Beard HS, Frye LL, Pollard WT, Banks JL. Glide: A new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J Med Chem. 2004;47:1750-9.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed